首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A superconducting solenoid prototype magnet for Accelerator Driven Subcritical System (ADS) Injection Ⅰ has been designed and fabricated, which has also been tested in a liquid Helium state inside a vertical Dewar in the Haerbin institute of Technology in November 2012. The design current was 210 A, when the test current reached 400 A no quench occurred so the solenoid magnet was forced to quench by the embedded heaters. The integral field strength, leakage field at the nearby upstream and downstream superconducting spoke cavities all meet the design requirements. At the same time, it also checked the reliability of the vertical test Dewar and the quenched detection system. The superconducting prototype magnet has accumulated valuable experiences for the coming batch magnets production and cryogenic test.  相似文献   

2.
A superconducting focusing solenoid has been designed and developed for the China Accelerator Driven System (CADS). In order to meet the requirement of focusing strength and fringe field while minimizing the physical size of the solenoid, the novel optimizing design method based on a linear programming method was employed. In this report, the design of the solenoid including magnetic field optimization, mechanical design and quench protection will be introduced. The solenoid has been fabricated and tested. The testing results show that the central field reached 8.4 T and the stray field was lower than 50 Gauss in the cavity zone.  相似文献   

3.
超导ECR离子源DECRIS-SC2   总被引:1,自引:0,他引:1  
A new compact version of the"liquid He-free"superconducting Electron Cyclotron Resonance Ion Source,to be used as an injector for the U-400M cyclotron,is presently under construction at the FLNR in collaboration with LHE(JINR).The axial magnetic field of the source is created by the superconducting magnet,and the NdFeB hexapole is used for the radial plasma confinement.The microwave frequency of 14GHz will be used for ECR plasma heating.The DECRIS-SC2 superconducting magnet is designed for the induction of a magnetic field on the axis of the source of up to 1.4T(extraction side)and 1.9T(injection side) at nominal current of 75A.Cooling of the coils is carried out by CM cryocooler with cooling power of 1W at the temperature 4.5K.The basic design features of the superconducting magnet and of the ion source are presented.The main parts of the source are in production.The first beam test of the source is expected in the beginning of 2007.  相似文献   

4.
何伟  赵红卫 《中国物理 C》2007,31(Z1):31-36
An advanced superconducting ECR ion source named SECRAL has been constructed at Institute of Modern Physics of Chinese Academy of Sciences,whose superconducting magnet assembly consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamp.In order to investigate the structure of sextupole coils and to increase the structural reliabilities of the magnet system, global and local structural analysis have been performed in various operation scenarios.Winding pack and support structure design of magnet system,mechanical calculation and stress analysis are given in this paper. From the analysis results,it has been found that the magnet system is safe in the referential operation scenarios and the configuration of the magnet complies with design requirements of the SECRAL.  相似文献   

5.
In this paper, an optimization design method for high field superconducting magnet with ferromagnetic shield is discussed. Firstly, the analytical formula for calculating the magnetic field at any space point is derived based on the equivalent magnetic charge model. Then the validity and accuracy of the formula are discussed by comparing the results with that of the finite element method (FEM)for the same model. Finally, a joint optimization of MRI magnet system with ferromagnetic shielding is carried out in order to improve the homogeneity of magnetic field in the DSV(diameter of spherical volume)region and enhance the field intensity in the center.  相似文献   

6.
As the dipoles of SSRF booster are powered in series, the magnet field error varies from magnet to magnet and results in bad beam quality. Sorting and installing magnets according to the measured field errors so that the errors on different magnets are partially compensated with each other, has been the easiest way in many cases to reduce the detrimental effects of the errors without introducing complications. Based on the magnet field measurement results, we investigated and implemented the sorting of dipoles using a method mixed by local cancellation and simulated annealing, and it's found to be quite effective.  相似文献   

7.
A resonant buildup of beam-induced fields in a superconducting radio frequency (RF) cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode (HOM) couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility) HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project (PEFP) in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.  相似文献   

8.
Through magnetization measurement with a SQUID magnetometer the heat treatment optimization of an international thermonuclear experimental reactor (ITER)-type internal-Sn Nb3Sn superconducting wire has been investigated. The irreversibility temperature T^* (H), which is mainly dependent on A15 phase composition, was obtained by a warming and cooling cycle at a fixed field. The hysteresis width △M(H) which reflects the flux pinning situation of the A15 phase is determined by the sweeping of magnetic field at a constant temperature. The results obtained from differently heat-treated samples show that the combination of T^* (H) with AM(H) measurement is very effective for optimizing the heat reaction process. The heat treatment condition of the ITER-type wire is optimized at 675℃/128 h, which results in a composition closer to stoichiometric Nb3Sn and a state with best flux pinning.  相似文献   

9.
In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configuration. In gyrotron, a strong magnetic field is necessary for electron beam to satisfy the electron cyclotron resonance condition and to excite one the eigemodes in the cavity. Its functions are: (I) to make electrons gyrate, ( 2 ) to offer enough adiabatic compression value to make electrons acquire strong transverse energy. During the period of adjustment, magnetic field distribution was measured. Meanwhile, operating current of superconducting magnet and operating frequency of gyrotron were determined.  相似文献   

10.
A flexible high power RF test stand has been designed and constructed at IHEP to test a variety of 500 MHz superconducting RF components for the upgrade project of the Beijing Electron Positron Collider (BEPCⅡ), such as the input coupler, the higher order modes (HOMs) absorber and so on. A high power input coupler has been conditioned and tested with the RF power up to 250 kW in continuous wave (CW), traveling wave (TW) mode and 150 kW CW in standing wave (SW) mode. A prototype of the HOMs absorber has been tested to absorb power of 4.4 kW. An introduction of the test stand design, construction and high power tests is presented in this paper.  相似文献   

11.
A low loss- (LL) type 500 MHz 5-cell superconducting niobium prototype cavity with a large beam aperture has been developed successfully including the optimization, the deep drawing and electron beam welding, the surface treatment and the vertical testing. The performance of the fundamental mode was optimized and the higher order modes were damped by adopting an enlarged beam pipe for propagation. Surface preparation or treatment including mechanical polishing, buffered chemical polishing and high pressure rinsing with ultra-pure water and so on was carried out carefully to ensure a perfect inner surface condition. The vertical testing results show that the accelerating voltage higher than 7.5 MV was obtained while the quality factor was better than 1× 109 at 4.2 K. No obvious multipacting or field emission was found during the test. However, a quench happened while increasing the field a little higher than 7.5 MV that at present limited the cavity performance.  相似文献   

12.
Superconducting magnet system for a 28GHz ECR ion source has been designed.The maximum axial magnetic fields are 4T at the rf injection side and 2T at the beam extraction side,respectively.The hexapole magnetic field is about 2T on the inner surface of the plasma chamber.The superconducting coils consist of six solenoids and six racetrack windings for a hexapole field.Two kinds of coil arrangements were investigated:one is an arrangement in which the hexpole coil is located in the bore of the solenoids,and another is the reverse of it.The coils use NbTi-Copper conductor and are bath-cooled in liquid helium.The six solenoids are excited with individual power supplies to search for the optimal axial field distribution.The current leads use high Tc material and the cryogenic system is operated in LHe re-condensation mode using small refrigerators.The thermal insulated supports of the cold mass have also been designed based on the calculated results of the magnetic force.The heat loads to 70K and LHe stages were estimated from the design of the supports,the current leads and so on.  相似文献   

13.
The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose of reaching a 37 nm vertical beam size at the interaction point (IP). During the initial commissioning, we started with larger-than-nominal β-functions at the IP in order to reduce the effects from higher-order optical aberrations and thereby simplifying the optical corrections needed. We report on the simulation studies at two different IP locations developed based on waist scan, dispersion, coupling and β function multiknobs correction in the large β optics of ATF2, in the presence of two kinds of magnet inaccuracies (quadrupole gradient and roll errors) to generate all possible linear optic distortions at the IP. A vertical beam size which is very close to the nominal beam size is obtained based on the simulation study.  相似文献   

14.
A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed.Water temperature and pressure environments of the ocean can be simulated in a water-filled tube,and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency.A tested sample is located at central position of the tube.A pair of projectors is separately located at both ends of the tube.Using an active anechoic technique,the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer.So the traveling sound field is built up in the tube.By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample,its reflection coefficients and transmission coefficients are obtained.In the measurement system,the inside diameter of the tube isΦ208 mm,the working frequency range is from 100 to 4000 Hz,the maximum pressure is 5 MPa.The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically.The results show that the measured values are in good agreement with the values calculated,and the measurement uncertainty is not greater than 1.5 dB.  相似文献   

15.
As part of the international research program on the superconducting cavity for the International Linear Collider (ILC) R&;D on the 1.3 GHz low loss superconducting cavities has been carried out at the Institute of High Energy Physics (IHEP) since 2005. A design of 1.3 GHz low loss cavity shape was proposed and six single-cell cavities of different niobium material were successfully fabricated with standard technology. In this study our priority was on large grain (LG) cavities. The two LG cavities were treated with complete procedures of surface treatments based on chemical polishing (CP) without electro polishing (EP) at IHEP. The two LG cavities and a fine grain cavity were sent to KEK for vertical testing. All the three cavities reached accelerating gradients higher than 35 MV/m and the maximum gradient of 40.27 MV/m was achieved in the LG cavity. This paper presents the process of the vertical RF tests and the comparison of the LG and fine grain cavities's performance.  相似文献   

16.
A 325 MHz β=0.14 superconducting half-wave resonator prototype has been developed at the Institute of High Energy Physics,Beijing,which can be applied in the low energy section of continuous wave high current proton linear accelerators.The electromagnetic design,multipacting simulation,mechanical optimization and fabrication are introduced in detail.Test results at room temperature and 4.2 K,and a comparison between measured and simulated results,are analyzed in this paper.  相似文献   

17.
叶峰 《中国物理 C》2013,37(4):79-83
In order to further improve beam transmission efficiency at the SSC, the beam center trajectory and injection and extraction system are recalculated based on the program group used in the final design of the GANIL accelerator, with some necessary changes and the addition of some auxiliary programs. The two different types of injection and extraction elements (the bending magnet and the inductive septum) are distinguished, and their interaction with the ambient field is considered. More focus is placed on considering the differences in the magnet field inhomogeneity of the ambient field in the located area of the inductive septum where the ends are situated in the ambient field (between the main magnet poles). Thus the gradient magnetic field problem of the inductive septum is solved perfectly. As well as preparing the necessary auxiliary programs and taking the structural integration of the SSC magnetic field maps, the measured magnet field correction is completed. Therefore, the trajectory and a variety of injection and extraction system parameters are obtained. According to the recalculation results, the SSC beam transmission efficiency will be enhanced significantly.  相似文献   

18.
A Superconducting ECR ion source with Advanced design in Lanzhou (SECRAL) was successfully built to produce intense beams of highly charged ions for Heavy Ion Research Facility in Lanzhou (HIRFL).The ion source has been optimized to be operated at 28GHz for its maximum performance.The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping.For 28GHz operation,the magnet assembly can produce peak mirror fields on axis 3.6T at injection,2.2T at extraction and a radial sextupole field of 2.0T at plasma chamber wall.A unique feature of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. During the ongoing commissioning phase at 18GHz with a stainless steel chamber,tests with various gases and some metals have been conducted with microwave power less than 3.2kW and it turned out the performance is very promising.Some record ion beam intensities have been produced,for instance,810eμA of O~(7 ),505eμA of Xe~(20 ),306eμA of Xe~(27 ),21eμA of Xe~(34 ),2.4eμA of Xe~(38 ) and so on.To reach better results for highly charged ion beams,further modifications such as an aluminium chamber with better cooling,higher microwave power and a movable extraction system will be done,and also emittance measurements are being prepared.  相似文献   

19.
The simulation and analysis for electron multipacting phenomenon in a low β spoke superconducting cavity in ADS proton accelerator are proposed. Using both CST and Track3P codes, the electron multipacting calculation for β=0.12 spoke superconducting cavity is implemented. The methods of multipacting calculation on both codes are studied and described. With the comparison between the calculation results and the cavity vertical test result, the accuracy and reliability of different codes on calculating multipacting are analyzed. Multipacting calculation can help to understand the results of vertical test and also can help to do the optimization in cavity design.  相似文献   

20.
The design, fabrication and field measurement of 11 DC curved dipole magnets for the PEFP Beam Line have been completed. In this paper, a design method for a complex end chamfer using OPERA-3D is proposed. The conventional method for estimating chamfer shape is extended and applied to a curved dipole magnet by a coordinate transformation. Using the interface with CAD software, the complex end chamfer is modeled and fully determined by 3D simulation to meet the field uniformity requirement. The magnetic field measurement results are in good agreement with the simulation. The design considerations, field simulation results, end chamfer development process and measurement results are presented in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号