首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对使用金属有机物汽相沉积法生长的AlGaN/AlN/GaN结构进行的变温霍尔测量,测量结果指出在AlN/GaN界面处有二维电子气存在且迁移率和浓度在2K时分别达到了1.4×104cm2·V-1·s-1和9.3×1012cm-2,且在200K到2K范围内二维电子气的浓度基本不变,变磁场霍尔测量发现只有一种载流子(电子)参与导电.在2K温度下,观察到量子霍尔效应,Shubnikov-de Haas (SdH) 振荡在磁场约为3T时出现,证明了此结构呈现了典型的二维电子气行为.通过实验数据对二维电子气散射过程的半定量分析,推出量子散射时间为0.23ps,比以往报道的AlGaN/GaN结构中的散射时间长,说明引入AlN层可以有效减小合金散射,进一步的推断分析发现低温下以小角度散射占主导地位.  相似文献   

2.
研究了表面预处理对GaN同质外延的影响,获得了高电子迁移率AlGaN/GaN异质结材料.通过NH_3/H_2混合气体与H_2交替通入反应室的方法对GaN模板和GaN半绝缘衬底进行高温预处理.研究结果表明,NH_3/H_2能够抑制GaN的分解,避免粗糙表面,但不利于去除表面的杂质,黄光带峰相对强度较高;H_2促进GaN分解,随时间延长GaN分解加剧,导致模板表面粗糙不平,AlGaN/GaN HEMT材料二维电子气迁移率降低.采用NH_3/H_2混合气体与H_2交替气氛模式处理模板或衬底表面,能够清洁表面,去除表面杂质,获得平滑的生长表面和外延材料表面,有利于提高AlGaN/GaN HEMT材料电学性能.在GaN衬底上外延AlGaN/GaN HEMT材料,2DEG迁移率达到2113 cm~2/V·s,电学性能良好.  相似文献   

3.
高鸿楷  云峰  张济康  龚平  候洵 《光子学报》1991,20(2):151-158
用自制常压MOCVD系统,在半绝缘GaAs衬底上生长高Al组份AlxGa1-xAs(其x值达0.83),和AlxGa1-xAs/GaAs/AlxGa1-xAs/GaAs多层结构,表面镜面光亮。生长层厚度从几十到十几μm可控,测试表明外延层晶格结构完整,x值调节范围宽,非有意掺杂低,高纯GaAs外延层载流子浓度n300K=1.7×1015cm-3,n77K=1.4×1015cm-3,迁移率μ300K=5900cmcm2/V.S,μ77K=55500cm2/V.S。用电子探针,俄歇能谱仪测不出非有意掺杂的杂质,各层间界面清晰平直。 对GaAs,AlGaAs生长层表面缺陷,衬底偏角生长温度及其它生长条件也进行了初步探讨。  相似文献   

4.
谭丛兵  钟向丽  王金斌  廖敏  周益春  潘伟 《物理学报》2007,56(10):6084-6089
利用溶胶-凝胶法在Pt/Ti/SiO2/Si(100)衬底上制备了Nd掺杂Bi4Ti3O12(Bi4-xNdxTi3O12, x=0.00,0.30,0.45,0.75,0.85,1.00,1.50)铁电薄膜样品.研究了Nd掺杂对Bi4Ti3O12薄膜的微结构和铁电性能的影响.研究结果表明:Nd掺杂未改变Bi4Ti3O12薄膜的基本晶体结构.在掺杂量x<0.45时,Nd3+只取代类钙钛矿层中的A位Bi3+.当x=0.45时,样品剩余极化强度达最大值,在270kV·cm-1的电场下为32.7μC·cm-2.掺杂量进一步增加时,结构无序度开始明显增大,Nd3+开始进入(Bi2O2)2+层,削弱其绝缘层和空间电荷库的作用,导致材料剩余极化逐渐下降.当掺杂量x达到1.50时,掺杂离子最终破坏(Bi2O2)2+层的结构,材料发生铁电-顺电相变.  相似文献   

5.
吕玲  张进成  李亮  马晓华  曹艳荣  郝跃 《物理学报》2012,61(5):57202-057202
研究了AlGaN/GaN 高电子迁移率晶体管(HEMT)的质子辐照效应. 在3 MeV质子辐照下, 当辐照剂量达到1× 1015 protons/cm2时, 漏极饱和电流下降了20%, 最大跨导降低了5%. 随着剂量增加, 阈值电压向正向漂移, 栅泄露电流增加. 在相同辐照剂量下, 1.8 MeV质子辐照要比3 MeV质子辐照退化严重. 从SRIM软件仿真中得到不同能量质子在AlGaN/GaN异质结中的辐射损伤区, 以及在一定深度形成的空位密度. 结合变频C-V测试结果进行分析, 表明了质子辐照引入空位缺陷可能是AlGaN/GaN HEMT器件电学特性退化的主要原因.  相似文献   

6.
Er3+单掺及Er3+/Yb3+共掺SiO2-Al2O3-La2O3玻璃光谱性质研究   总被引:10,自引:4,他引:6  
研究了单掺Er3+及Er3+/Yb3+共掺SiO2-Al2O3-La2O3玻璃的光谱性质随稀土离子浓度变化规律,应用McCumber理论计算了玻璃在1.53 μm的发射截面及积分吸收截面.结果表明:在Er3+离子掺杂浓度相同时,玻璃在980 nm吸收截面与Yb3+掺杂浓度成反比;当样品中Yb3+离子掺杂浓度为3.94×1020 cm-3时,玻璃在1.53 μm的吸收截面和发射截面最大,在1.40~1.60 μm积分吸收截面也最大;Er3+/Yb3+共掺SiO2-Al2O3-La2O3玻璃在1.53 μm的荧光半高宽随Er3+掺杂浓度升高而增加,当Er3+离子掺杂浓度为2.41×1020 cm-3时,玻璃的荧光半高宽(FWHM)达到52.5 nm.  相似文献   

7.
本文在20°—300°K研究了室温载流子浓度2×1012—1×1020cm-3含硼或磷(砷)Si的电学性质。对一些p-Si样品用弱场横向磁阻法及杂质激活能法进行了补偿度的测定,并进行了比较。从霍尔系数与温度关系的分析指出,对于较纯样品,硼受主能级的电离能为0.045eV,磷施主能级为0.045eV,在载流子浓度为1018—1019cm-3时发现了费米简并,对载流子浓度为2×1017—1×1018cm-3的p-Si及5×1017—4×1018cm-3的n-Si观察到了杂质电导行为。从霍尔系数与电导率计算了非本征的霍尔迁移率。在100°—300°K间,晶格散射迁移率μ满足关系式AT-a,其中A=2.1×109,α=2.7(对空穴);或A=1.2×108,α=2.0(对电子)。另外,根据我们的材料(载流子浓度在5×1011—5×1020cm-3间),分别建立了一条电阻率与载流子浓度及电阻率与迁移率的关系曲线,以提供制备材料时参考之用。  相似文献   

8.
孙或  杨春晖  姜兆华  孟祥彬 《物理学报》2012,61(12):127801-127801
本文引入与浓度和厚度有关的kNL待定参数, 在J-O理论基础上, 对Er3+/Yb3+掺杂的LiNbO3和LiTaO3单晶衬底上 的多晶水热外延样品进行了基于吸收光谱的拟合计算. LiNbO32=2.34× 10-20 cm2, Ω4=0.77× 10-20 cm2, Ω6=0.31×10-20 cm2, kNL=4.32× 10-2 mol·m-2. LiTaO32=1.68×10-20 cm2, Ω4=0.84×10-20 cm2, Ω6=0.45×10-20 cm2, kNL=9.17×10-3 mol· m-2. 该方法可尝试推广到粉体或胶体等难以直接获得浓度和厚度数据的体系. 经上转换发光测试及光谱参数计分析认为Er3+/Yb3+离子的掺杂浓度比为1:1的情况下, 样品呈现绿色上转换发光光谱; 可尝试以降低基质声子能量的方法提高4I13/2能级 对2H11/24S3/2能级的量子剪裁效率.  相似文献   

9.
用常压MOCVD在半绝缘GaAs衬底上生长了GaxIn1-xP(x=0.476~0.52)外延层,对外延层进行了X光双晶衍射、Hall和光致发光(PL)测试.77K下电子迁移率达3300cm2/V.s(浓度为1.4×1016cm-3).载流子浓度随生长温度升高,随Ⅴ/Ⅲ比的增大而降低,并提出P空位(Vp)是自由载流子的一个重要来源,17KPL谱中,Ga0.5In0.5P(Tg=650℃,Ⅴ/Ⅲ=70)的峰能为1.828eV,半峰宽为19meV.另外,在1.849eV处还有一较弱的峰,GaInP峰能和其计算的带隙最大相差113meV,这可能与GaInP中杂质或缺陷以及其中存在有序结构有关.  相似文献   

10.
通过对GaN基异质结材料C-V特性中耗尽电容的比较,得出AlGaN/GaN异质结缓冲层漏电与成核层的关系.实验结果表明,基于蓝宝石衬底低温GaN成核层和SiC衬底高温AlN成核层的异质结材料比基于蓝宝石衬底低温AlN成核层异质结材料漏电小、背景载流子浓度低.深入分析发现,基于薄成核层的异质结材料在近衬底的GaN缓冲层中具有高浓度的n型GaN导电层,而基于厚成核层的异质结材料的GaN缓冲层则呈高阻特性.GaN缓冲层中的n型导电层是导致器件漏电主要因素之一,适当提高成核层的质量和厚度可有效降低GaN缓冲层的背景载流子浓度,提高GaN缓冲层的高阻特性,抑制缓冲层漏电. 关键词: AlGaN/GaN异质结 GaN缓冲层 漏电 成核层  相似文献   

11.
The two-dimensional electron gas distribution in AlGaN/GaN high electron mobility transistors is determined from the solution of the coupled Schr?dinger’s and Poisson’s equations. Considering the piezoelectric effect, the two-dimensional electron gas concentration is calculated to be as high as 7.7×1019 cm-3. In order to obtain an understanding of how the two-dimensional electron gas distribution is influenced by dopants in GaN, we observed the two-dimensional electron gas concentration and occupation of sub-bands versus dopant concentration in the GaN layer of an AlGaN/GaN heterostructure. Our results show that the two-dimensional electron gas concentration is slightly increased at higher doping levels in GaN, while the quantum confinement in the AlGaN/GaN heterostructure is weakened with the increase of donor concentration in the GaN layer. Received: 26 May 2001 / Accepted: 23 July 2001 / Published online: 23 January 2002  相似文献   

12.
Silicon-doped GaN epilayers and AlGaN/GaN heterostructures were developed by nitrogen plasma-assisted molecular beam epitaxy on high resistivity iron-doped GaN (0001) templates and their properties were investigated by atomic force microscopy, x-ray diffraction and Hall effect measurements. In the case of high electron mobility transistors heterostructures, the AlN mole fraction and the thickness of the AlGaN barrier employed were in the range of from 0.17 to 0.36 and from 7.5 to 30 nm, respectively. All structures were capped with a 2 nm GaN layer.Despite the absence of Ga droplets formation on the surface, growth of both GaN and AlGaN by RF-MBE on the GaN (0001) surfaces followed a step-flow growth mode resulting in low surface roughness and very abrupt heterointerfaces, as revealed by XRD. Reciprocal space maps around the reciprocal space point reveal that the AlGaN barriers are fully coherent with the GaN layer.GaN layers, n-doped with silicon in the range from 1015 to 1019 cm−3 exhibited state of the art electrical properties, consistent with a low unintentional background doping level and low compensation ratio. The carrier concentration versus silicon cell temperatures followed an Arhenius behaviour in the whole investigated doping range. The degenerate 2DEG, at the AlGaN/GaN heteroiterfaces, exhibited high Hall mobilities reaching 1860 cm2/V s at 300 K and 10 220 cm2/V s at 77 K for a sheet carrier density of 9.6E12 cm−2.The two dimensional degenerate electron gas concentration in the GaN capped AlGaN/GaN structures was also calculated by self-consistent solving the Schrödinger–Poisson equations. Comparison with the experimental measured values reveals a Fermi level pinning of the GaN (0001) surface at about 0.8 eV below the GaN conduction band.  相似文献   

13.
We report electrical transport properties of intentionally and unintentionally doped wurtzite GaN epilayers within the temperature range of 3K up to 340 K. Specifically, temperature dependence of the carrier concentration, mobility and resistivity are investigated. Obtained data could only be explained on the basis of two-band model, namely, high mobility conduction band and low mobility impurity band. The threshold doping concentration for the dominance of the conduction band electrons is estimated to be about 1018 cm–3.  相似文献   

14.
GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016/cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.  相似文献   

15.
Using depletion approximation theory and introducing acceptor defects which can characterize radiation induced deep-level defects in AlGaN/GaN heterostructures, we set up a radiation damage model of AlGaN/GaN high electron mobility transistor (HEMT) to separately simulate the effects of several main radiation damage mechanisms and the complete radiation damage effect simultaneously considering the degradation in mobility. Our calculated results, consistent with the experimental results, indicate that thin AlGaN barrier layer, high Al content and high doping concentration are favourable for restraining the shifts of threshold voltage in the AlGaN/GaN HEMT; when the acceptor concentration induced is less than 1014cm-3, the shifts in threshold voltage are not obvious; only when the acceptor concentration induced is higher than 1016cm-3, will the shifts of threshold voltage remarkably increase; the increase of threshold voltage, resulting from radiation induced acceptor, mainly contributes to the degradation in drain saturation current of the current--voltage (I--V) characteristic, but has no effect on the transconductance in the saturation area.  相似文献   

16.
张金风  王冲  张进城  郝跃 《中国物理》2006,15(5):1060-1066
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schr\"{o}dinger--Poisson equations, theoretical investigation is carried out about the effects of donor density (0--1\times 1019cm-3 and temperature (50--500K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective \Delta Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective \Delta Ec. The Capacitance--Voltage (C-V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.  相似文献   

17.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

18.
Epitaxial growth of high-quality hexagonal GaN films on sapphire substrates using light-radiation heating metal-organic chemical vapor deposition (LRH-MOCVD) is first reported. The deposition temperature is 950 °C, about 100 °C lower than that in normal rf-heating MOCVD growth. The FWHM of GaN (0002) peak of the X-ray diffraction rocking curve is 8.7 arc  min. Photoluminescence spectrum of GaN film shows that there is a very strong band-edge emission and no “yellow-band” luminescence. Hall measurement indicates that the n-type background carrier concentration of GaN film is 1.7×1018 cm-3 and the Hall mobility of it is 121.5 cm2/V s. It is suggested that the radiation of light in GaN growth enhances the dissociation of ammonia and decreases the disadvantages of the parasite reaction between trimethylgallium and ammonia. Received: 20 August 1998 / Accepted: 30 October 1998 / Published online: 10 March 1999  相似文献   

19.
郭浩民  文龙  赵志飞  步绍姜  李新化  王玉琦 《中国物理 B》2012,21(10):108101-108101
We investigated the quantum dots-templated growth of a(0001) GaN film on a c-plane sapphire substrate.The growth was carried out in a radio-frequency molecular beam epitaxy system.The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images,as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the AlN buffer.The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra.The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves.Meanwhile,the threading dislocation density in the quantum dots-templated film was estimated to be 7.1×107cm-2,which was significantly suppressed compared with that of the AlN-buffered GaN film.The roomtemperature Hall measurement showed an electron mobility of up to 1860cm2 /V·s in the two-dimensional electron gas at the interface of the Al 0.25Ga0.75 N/GaN heterojunction.  相似文献   

20.
The properties of indium tin oxide (ITO) thin films, deposited at room temperature by simultaneous pulsed laser deposition (PLD), and laser irradiation of the substrate are reported. The films were fabricated from different Sn-doped In2O3 pellets at an oxygen pressure of 10 mTorr. During growth, a laser beam with an energy density of 0, 40 or 70 mJ/cm2 was directed at the middle part of the substrate, covering an area of ∼1 cm2. The non-irradiated (0 mJ/cm2) films were amorphous; films irradiated with 40 mJ/cm2 exhibited microcrystalline phases; and polycrystalline ITO films with a strong 〈111〉> preferred orientation was obtained for a laser irradiation density of 70 mJ/cm2. The resistivity, carrier density, and Hall mobility of the ITO films were strongly dependent on the Sn doping concentration and the laser irradiation energy density. The smallest resistivity of ∼1×10-4 Ω cm was achieved for a 5 wt % Sn doped ITO films grown with a substrate irradiation energy density of 70 mJ/cm2. The carrier mobility diminished with increasing Sn doping concentration. Theoretical models show that the decrease in mobility with increasing Sn concentration is due to the scattering of electrons in the films by ionized centers. PACS 81.15.Fg; 73.61.-r; 73.50.-h  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号