首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum dots-templated growth of strain-relaxed GaN on a c-plane sapphire by radio-frequency molecular beam epitaxy
Authors:Guo Hao-Min  Wen Long  Zhao Zhi-Fei  Bu Shao-Jiang  Li Xin-Hua  Wang Yu-Qi
Institution:Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract:We investigated the quantum dots-templated growth of a (0001) GaN film on a c-plane sapphire substrate. The growth was carried out in a radio-frequency molecular beam epitaxy system. The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images, as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the AlN buffer. The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra. The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves. Meanwhile, the threading dislocation density in the quantum dots-templated film was estimated to be 7.1×107 cm-2, which was significantly suppressed compared with that of the AlN-buffered GaN film. The room-temperature Hall measurement showed an electron mobility of up to 1860 cm2/V·s in the two-dimensional electron gas at the interface of the Al0.25Ga0.75N/GaN heterojunction.
Keywords:III-V semiconductor  radio-frequency molecular beam epitaxy  dislocation
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号