首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B203/C powder precursors under an argon flow at 1100℃. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.  相似文献   

2.
This paper reports that Nd2O3 nanoparticles modified by AOT(sodium bis(2-ethylhexyl) sulfosuccinate) were prepared using microemulsion method in the system of water and propanol/AOT/toluene. Transmission electron microscopy shows that the Nd2O3 nanoparticles take the shape of sphere with 18\,nm and 31nm with different preparation. The organic sol of Nd2O3 nanoparticles is very stable at room temperature. X-ray diffraction results show that the product has hexagonal phase structure. Two ultraviolet emission band at 344\,nm and 361\,nm corresponding to the transition of 4D3/2→4I9/2 and 2P3/24I112 or 4D3/24I13/2 were observed.  相似文献   

3.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

4.
符史流  尹涛  柴飞 《中国物理》2007,16(10):3129-3133
Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.  相似文献   

5.
杨海贵  戴振文  孙志伟 《中国物理》2006,15(6):1273-1277
The luminescence of Er^3+:YAlO3 in ultraviolet visible and infrared ranges under the 518 nm excitation of the multiples ^2H11/2 have been investigated. Ultraviolet (275 nm and 318 nm), violet (405 nm and 413 nm) and blue (474 nm) upconversion and infrared downconversion luminescence has been observed. By means of measuring the fluorescence decay curves and using the theory of rate equations, the luminescence kinetics was studied in detail and the processes of energy transfer upconversion (ETU) and excitation state absorption (ESA) were proposed to explain the upconversion phenomena.  相似文献   

6.
肖雪  李海洋  牛冬梅  罗晓琳 《中国物理》2007,16(12):3655-3661
The photoionization of seeded carbon bisulfide molecular beam by a 1064\,nm nanosecond Nd-YAG laser with intensities varying from $0.8\times10^{11}$ to $5.6\times10^{11}$\,W/cm$^{2}$ have been studied by time-of-flight mass spectrometry. Multiply charged ions of S$^{q + }$ ($q$ = 2--6) and C$^{q +}$ ($q$ = 2--4) with kinetic energy of hundreds of electron volts have been observed, and there are strong experimental evidences indicating that those multicharged ions originate from the ionization of CS$_{2}$ neat clusters in the beam. An electron recolliding ionization model is proposed to explain the appearance of those multiply charged atomic ions under such low laser intensities.  相似文献   

7.
低温条件下单晶氮化铝纳米线生长机理的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在25mL的不锈钢反应釜中,利用无水三氯化铝与叠氮化钠在无溶剂的条件下直接反应,成功地合成出了单晶氮化铝纳米线,反应温度为450℃,有效反应时间为24h.高分辨率透射电子显微镜测试结果显示,纳米线多为长直线状外貌特征,直径在40—60nm范围内,最大长度可达几个微米.高分辨率电子衍射和X射线衍射结果都表明,多数纳米线为六方结构,也有少量呈现面心立方结构.同时,提出了长直线状六方和面心立方单晶氮化铝纳米线的生长机理的假设,并对六方单晶氮化铝纳米线生长方向的人工控制也进行了讨论. 关键词: 六方单晶氮化铝 纳米线 X射线衍射 透射电子显微镜  相似文献   

8.
沈俊  王芳  李养贤  孙继荣  沈保根 《中国物理》2007,16(12):3853-3857
Magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 have been investigated by magnetization measurement. This compound is of a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type structure with a saturation magnetization of 187\,emu/g at 5\,K and a reversible second-order magnetic transition at Curie temperature $T_{\rm C} = 186$\,K. A magnetic entropy change $\Delta S = 7$\,J\,$\cdot$\,kg$^{-1}$\,$\cdot$\,K$^{-1}$ is observed for a magnetic field change from 0 to 5\,T. A large value of refrigerant capacity (RC) is found to be 330\,J/kg for fields ranging from 0 to 5\,T. The large RC, the reversible magnetization around $T_{\rm C}$ and the easy fabrication make the Tb6Co1.67Si3 compound a suitable candidate for magnetic refrigerants in a corresponding temperature range.  相似文献   

9.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

10.
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

11.
李成仁 《物理学报》2008,57(1):224-227
The green and red up-conversion emissions centred at about 534, 549 and 663\,nm of wavelength, corresponding respectively to the ${^{2}}H_{11 / 2} \to {^{4}}I_{15 / 2}$, ${^{4}}S_{3 / 2} \to {^{4}}I_{15 / 2}$ and ${^{4}}F_{9 / 2} \to {^{4}}I_{15 / 2}$ transitions of Er$^{3 + }$ ions, have been observed for the Er$^{3 + }$-doped silicate glass excited by a 978\,nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296--673\,K, which shows that Er$^{3 + }$-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

12.
This paper reports that hexagonal-phase LaF3:Yb0.20^3+,Er0.02^3+ and LaF3:Yb0.20^3+, Tm0.02^3+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb^3+/Er^3+ and Yb^3+/Tm^3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluo- rescence mechanisms of LaF2:Yb0.20^3+, Er0.02^3+ and LaF3:Yb0.20^3+,Tm0.02^3+ NCs are investigated with a 980-nm diode laser as excitation source.  相似文献   

13.
杨银堂  韩茹  王平 《中国物理 B》2008,17(9):3459-3463
This paper employs micro-Raman technique for detailed analysis of the defects (both inside and outside) in bulk 4H-SiC. The main peaks of the first-order Raman spectrum obtained in the centre of defect agree well with those of perfect bulk 4H-SiC, which indicate that there is no parasitic polytype in the round pit and the hexagonal defect. Four electronic Raman scattering peaks from nitrogen defect levels are observed in the round pit (395\,cm$^{-1}$, 526\,cm$^{-1}$, 572\,cm$^{-1}$, and 635\,cm$^{-1})$, but cannot be found in the spectra of hexagonal defect. The theoretical analysis of the longitudinal optical plasmon--phonon coupled mode line shape indicates the nonuniformity of nitrogen distribution between the hexagonal defect and the outer area in 4H-SiC. The second-order Raman features of the defects in bulk 4H-SiC are well-defined using the selection rules for second-order scattering in wurtzite structure and compared with that in the free defect zone.  相似文献   

14.
This paper investigates the third-order nonlinear optical properties of two azo-nickel chelate compounds by the optical Kerr gate method at 830 nm wavelength with pulse duration of 120 fs. Both of the two compounds exhibited large third-order optical nonlinearity. The second-order hyperpolarizability,γ, of Compound 1 is of 1.0 × 10^-31 esu. Due to the charge transfer, the γ of Compound 2 with electron donor and acceptor group is 4.9 × 10^-31 esu, which is a four-time enhancement in comparison with Compound i. The absorption spectra show that the electron push-pull effect, which induces intramolecular charge transfer, leads to the increased optical nonlinearity.  相似文献   

15.
We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.  相似文献   

16.
The Ho:YAP crystal is grown by the Czochralski technique.The room temperature polarized absorption spectra of Ho:YAP crystal was measured on a c cut sample with 1 at% holmium.According to the obtained Judd-Ofelt intensity parameters Ω2 = 1.42 × 10-20 cm2,Ω4 = 2.92 × 10-20 cm2,and Ω6 = 1.71 × 10-20 cm2,this paper calculated the fluorescence lifetime to be 6 ms for 5I7 →5 I8 transition,and the integrated emission cross section to be 2.24×10-18 cm2.It investigates the room temperature Ho:YAP laser end pumped by a 1.91 μm Tm:YLF laser.The maximum output power was 4.1 W when the incident 1.91 μm pump power was 14.4 W.The slope efficiency is 40.8%,corresponding to an optical to optical conversion efficiency of 28.4%.The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.  相似文献   

17.
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.  相似文献   

18.
A single layer of CoFeB and a multilayer of CoFeB--MgO films are prepared by means of DC/RF magnetron sputter deposition. The excellent microwave properties and high electrical resistivity are simultaneously achieved in the discontinuous multilayer structure of [Co44Fe44B12(0.7nm)/MgO(0.4nm)]_{40} film. This film has a high permeability ({μ \prime }) (larger than 100 below 2.1GHz), a high magnetic loss (μ') (larger than 100 in a range from 1.5 to 3.3GHz), a resistivity of 3.3× 10*  相似文献   

19.
This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by I--V measurements. Single-crystalline ZnO nanowires were synthesized by a hydrothermal method, they were used as a suspended ZnO nanowire channel of back-gate field-effect transistors (FET). The fabricated suspended nanowire FETs showed a p-channel depletion mode, exhibited high on--off current ratio of ~105. When VDS=2.5 V, the peak transconductances of the suspended FETs were 0.396 μS, the oxide capacitance was found to be 1.547 fF, the pinch-off voltage VTH was about 0.6 V, the electron mobility was on average 50.17 cm2/Vs. The resistivity of the ZnO nanowire channel was estimated to be 0.96× 102Ω cm at VGS = 0 V. These characteristics revealed that the suspended nanowire FET fabricated by the photolithography process had excellent performance. Better contacts between the ZnO nanowire and metal electrodes could be improved through annealing and metal deposition using a focused ion beam.  相似文献   

20.
The third-order optical nonlinearities of [(CH3)4N]Au(dmit)2 (dmit = 4,5-dithiolate-1,3-dithiole-2-thione) at 532 nm and 1064 nm are investigated using the Z-scan technique with pulses of picoseconds duration. The Z-scan spectra reveal a strong nonlinear absorption (reverse saturable absorption) and a negative nonlinear refraction at 532 nm. No nonlinear absorption is observed at 1064 nm. The molecular second-order hyperpolarizability γ for the [(CH3)4N]Au(dmit)2 molecule at 532nm is estimated to be as high as (2.1 ±0.1) × 10^-31 esu, which is nearly three times larger than that at 1064 nm. The mechanism responsible for the difference between the results is analysed. Nonlinear transmission measurements suggest that this material has potential applications in optical limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号