首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cw high efficient Ho:YAI03 laser pumped by 1.91 μm diode-pumped Tm:YLF laser at room temperature is realized. The maximum output power reaches 8.5 W when the incident pump power is 15.6 W. The slope efficiency is 63.7%, and the Tm:YLF to Ho:YAP optical conversion efficiency is 54.5%. The laser wavelength is 2118.3nm when the transmission of output coupler is 30%. The beam quality factor is M2 -1.39 measured by the traveling knife-edge method.  相似文献   

2.
We report a continuous-wave (CW) 2.1-μm Ho:YAG laser operating at room temperature pumped by a diode-pumped 1.94-μm Tm:YAP laser.The maximum output power of 1.5 W is obtained from Ho:YAG laser,corresponding to Tm-to-Ho slope efficiency of 17.9%and diode-to-Ho conversion efficiency of 5.6%.  相似文献   

3.
A cw high efficient Ho:YAlO3 laser pumped by 1.91μm diode-pumped Tm:YLF laser at room temperature is realized. The maximum output power reaches 8.5W when the incident pump power is 15.6W. The slope efficiency is 63.7%, and the Tm:YLF to Ho:YAP optical conversion efficiency is 54.5%. The laser wavelength is 2118.3nm when the transmission of output coupler is 30%. The beam quality factor is M2~1.39 measured by the traveling knife-edge method.  相似文献   

4.
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.  相似文献   

5.
A cryogenic and room-temperature diode pumped Tm,Ho:YVO4 microchip laser with 0.5 mm crystal length lasing around 2μm is demonstrated for the first time to our knowledge. Under cryogenic temperature of 77 K, as much as 1.2 W output and slope efficiency of 35% with respect to absorbed pump power are obtained. At temperature of 5℃ the maximum output power of 48mW is obtained at an absorbed pump power of 503 mW, representing a 9.5% optical to optical conversion efficiency. In addition, as much as 8 mW single-frequency output lasing at 2052.6 nm is achieved at room temperature of 15℃.  相似文献   

6.
An Er3 /Yb3 phosphate laser glass was fabricated and characterized. According to McCumber theory, the stimulated emission cross-section of Er3 ions at 1533 nm calculated by absorption spectrum was 0.84×10-20 cm2, and the fluorescence lifetime of 4I13/2 level was 8.5 ms. Continuous wave (CW) laser operation of this Er3 /Yb3 phosphate glass pumped by laser diode (LD) was demonstrated at room temperature. The maximum output power of 80 mW and slope efficiency of 16.5% were obtained.  相似文献   

7.
We report a compact high power Tm,Ho:YAG laser nearly at room temperature. The laser-diode side-pumped Tm:YAG and Tm,Ho:YAG laser modules are operated in the same cavity. The laser yields 37.34 W of continuous wave output power under the temperature of 6℃, corresponding to a maximum slope efficiency of 16.7% when the output power lies from 5.1 W to 27.0 W. This is the first report on the combined Tm:YAG and Tm,Ho:YAG lasers for obtaining high power 2.1 μm laser.  相似文献   

8.
The generation of mid-infrared pulsed lasers was achieved in a Ho3+:YAG laser pumped gain-switched Cr^2+:Cd Se laser system with the shortest pulse duration of 4.15 ns.With a pump pulse duration of 50 ns and pump power of 2.7 W,the gain-switched Cr^2+:Cd Se laser achieved over 10 times pulse narrowing,obtaining the maximum peak power of 5.7 k W.The optical-to-optical conversion efficiency was 3.7%,which could be further improved with better crystal surface polishing quality.The laser central wavelength was measured to be 2.65μm with a bandwidth(FWHM)of 50 nm.In addition,the parameter optimization for suppressing the pulse tail was discussed,while the long cavity and high output transmissivity contributed to obtaining the single-peak pulses.  相似文献   

9.
A liquid-nitrogen-cooled Tm, Ho:YLF laser is constructed with a 10-mm-long Tm(6%) and Ho(0.5%) co-doped yttrium lithium fluoride crystal pumped by a laser diode operating at 792 nm. The laser output power is improved by cooling the Tm, Ho:YLF crystal from 300 to 77 K. When the crystal is kept at 77 K, the laser threshold pump power is 230 mW, the slope efficiency is 27.4%, and the maximum optical-to-optical efficiency is 19.9%. At the same time, the relation between the input power and the output power at different temperatures is obtained.  相似文献   

10.
A doubly resonant ZnGeP_2(ZGP)optical parametric oscillator(OPO)pumped by a novel Tm.Ho:GdVO_4 laser was demonstrated.Cryogenic Tm(5 at.-%),Ho(0.5 at.-%):GdVO_4 laser with high pulse repetition frequency(PRF)of 10 kHz at 2.05μm was employed as pumping source of ZGP OPO.The 15-mm-long ZGP crystal,55°cut forⅠ-type phase-matching with low absorption coefficient less than 0.05 cm~(-1)at 2 #m, was placed in a plano-plano cavity with resonator length of 30 mm.The ZGP OPO generated a total combined output power of 1.2 W at 3.75 and 4.52μm under pumping power of 5.3 W,corresponding to slope efficiency of 40% from incident 2-μm laser power to mid-infrared(Mid-IR)output.A widely tunable range from 3.0 to 6.5μm was achieved by changing the crystal angle only 3.5°.  相似文献   

11.
A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.  相似文献   

12.
The lasing characteristics of Tm:LuAG at room temperature are reported.The maximum output power at 2.023-μm wavelength is 4.91 W and the slope efficiency is 25.39%.The mode matching between pump mode and laser mode is optimized by changing the pump beam waist radius and its location.Different output couplers are used to realize the optimal laser output.The relationship between operation temperature and output power is also discussed.  相似文献   

13.
This letter demonstrates an efficient high-power high-brightness 2-μm continuous-wave (CW) laser with double-end, diffusion-bonded Tm, Ho:YVO4 crystal cooled with liquid N2. The reduction in thermal stress in the composite Tm, Ho:YVO4 rod enabled the laser to achieve a laser output power of 23.4 W at 2.05 μm, which is 1.37 times higher than that of the non-composite Tm, Ho:YVO4 rod. The corresponding slope efficiency is 37.3% and the optical optical conversion efficiency is 35.4%. The beam quality M2 factor is about 1.85 at 20 W output level with circularly symmetric beam spot.  相似文献   

14.
We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight plano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.  相似文献   

15.
An Er3+/yb3+ phosphate laser glass was fabricated and characterized. According to McCumber theory, the stimulated emission cross-section of Er3+ ions at 1533 nm calculated by absorption spectrum was 0.84 × 10-20 cm2, and the fluorescence lifetime of 4I13/2 level was 8.5 ms. Continuous wave (CW) laser operation of this Er3+/Yb3+ phosphate glass pumped by laser diode (LD) was demonstrated at room temperature. The maximum output power of 80 mW and slope efficiency of 16.5% were obtained.  相似文献   

16.
At liquid-nitrogen temperature, at 10-kHz pulse repetition rate, Q-switched 36-ns pulses with average output power of 4 W at 2.05 μm and 4.5-W continuous wave output power with a total optical-optical conversion efficiency of 30%, were achieved from a 6% Tm, 0.5% Ho:YLiF4 laser. This laser was end-pumped by a fiber-coupled laser diode emitting up to 15 W around 792 nm. The 1-m-long optical fiber carrying the pump radiation has a core diameter of 700 μm with a numerical aperture of 0.22.  相似文献   

17.
Thermal effect in crystals is the main obstacle blocking diode-pumped solid state laser to get high and stable output, power. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lensing theoretically based on the numerical heat analysis to the end-pumped anisotropic laser crystal. The temperature distributions in Nd:YV04/YVO4 composite crystal and conventional crystal were analyzed and compared. The end-pumped Nd:YVO4/YVO4 composite crystal laser was designed and set up with 2-cavity. The maximum output powers of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the incident purnp power of 16.5 W. The highest optical-optical conversion efficiencies were up to 59.8% at 1064 nm and 37.2% at 532 nm respectively.  相似文献   

18.
Free-running emerald laser pumped by 660-nm laser diode (LD) was reported. Free-running output power of 24 mW has been obtained with overall efficiency of 1.4% and slope efficiency of 11.9% when the LD incident power was 2.56 W. The laser threshold value of emerald crystal was estimated to be 0.7 W.  相似文献   

19.
A narrow linewidth continuous wave Ho:YAP laser with two Fabry-Perot etalons pumped by a Tm:YLF laser is reported. The maximum output power reaches 8.3 W when the incident pump power is 15.8 W, with 52.5% optical-to- optical conversion efficiency and 62.6% slope efficiency. A stable laser output at 2118.1 nm is achieved, with a linewidth less than 0.4 nm (full width at half maximum). The beam quality factor is M2- 1.25, measured by the traveling knife-edge method.  相似文献   

20.
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号