首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.  相似文献   

2.
Efficient 266nm Ultraviolet Beam Generation in K2Al2B2O7 Crystal   总被引:2,自引:0,他引:2       下载免费PDF全文
The ultraviolet beam at 266nm was obtained by fourth harmonic generation of 1064nm Nd:YAG laser radiation through a nonlinear crystal K2Al2B2O7 (KABO).The fundamental frequency of a flash-lamp pumped Nd:YAG laser was doubled in a β-Ba2B2O4 crystal to generate a second harmonic output at the wavelength of 532nm,and then doubled again in the KABO crystal to generate the fourth harmonic output at 266nm.The optical conversion efficiency from 532 to 266 nm was investigated for the first time,and 13% was achieved.  相似文献   

3.
We report the experimental realization of a ^88Sr magneto-optical trap (MOT) operating at the wavelength of 461 nm. The MOT is loaded via a 32 cm long spin-flip type Zeeman slower which enhances the MOT population by a factor of 22. The total laser power available in our experiment is about 300mW. We have trapped 1.6 × 10^8 ^88 Sr atoms with a 679nm and 707nm repumping laser. The two repumping lasers enhance the trap population and trap lifetime by factors of 11 and 7, respectively. The ^88 Sr cloud has a temperature of about 2.3 mK, measured by recording the time evolution of the absorption signal.  相似文献   

4.
We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M^2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.  相似文献   

5.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

6.
邓海啸 《中国物理 C》2010,34(10):1649-1654
The echo-enabled harmonic generation (EEHG) scheme offers remarkable efficiency for generating high harmonic microbunching with a relatively small energy modulation. A proof of principle experiment of the EEHG scheme has been proposed at the Shanghai deep ultraviolet (SDUV) free electron laser (FEL) facility, where the 4th harmonic of the seed laser is amplified in the 9 m long radiator. To explore the advantages of the EEHG scheme, in this paper, a method of measuring the coherent high harmonic radiation of the radiator is proposed to investigate the electron beam microbunching corresponding to the 10th-20th harmonics of the seed laser. The principle of the proposed method, comparisons with existing methods and the simulation results are presented and discussed.  相似文献   

7.
The conversion efficiency on the sixth harmonic of 1064 nm in KBe2BO3F2 (KBBF) at different gas pressures in two kinds of gases, helium and nitrogen, is measured and compared. In the both gases, maximum conversion efficiency on the sixth harmonic of 1064 nm in high vacuum is nearly 10% of 355 nm, which is almost four times higher than that in low vacuum. The maximum average output power at 177.3 nm is 670 ttW with the repetition rate of 10 Hz and the duration of 20 ps in high vacuum. It indicates that the sixth harmonic generation in high vacuum is more preferable than that in low vacuum.  相似文献   

8.
1.9-W flash-lamp-pumped solid-state 266-nm ultraviolet laser   总被引:1,自引:0,他引:1  
Deep ultraviolet lasers have various applications in industries and scientific researches. For 266-nm ultra- violet (UV) laser generation, the good beam quality of 1064-nm laser and the elimination of gray-tracking effect of KTP crystal are two key factors. Using a dynamically stable resonator design, 1064-nm laser with an average power of 52 W is realized with repetition rate of 16 kHz. The measured M^2 factor characterizing the beam quality is 1.5. By the elimination of gray-tracking effect of KTP crystal, an 18-W green laser is realized with the M2 factor of 1.6. Using a BBO crystal for the fourth harmonic generation, a 1.9-W 266-nm UV laser is achieved.  相似文献   

9.
A 17.7W average power output at 355nm by the third harmonic generation (THG) of 1064nm light has been obtained with the nonlinear optical crystal CsB305 (CBO). The fundamental light source is a diode-pumped Nd:YAG laser with a pulse duration of 70ns and a repetition rate of 7kHz. A CBO crystal cut for type-Ⅱ PM angles is used in the experiment. The THG energy conversion efficiency with CBO is twice as large as that with LBO. As a THG crystal, CBO has better performance than that of LiB305 crystal (LBO).  相似文献   

10.
A diode pumped injection seeded single-longit udinal-mode (SLM) Nd: YA G laser is achieved by using the resonancedetection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 m J/pulse of single-frequency 1064 nm output. The M2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without, mode hopping  相似文献   

11.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

12.
A cruciform cavity is presented for multi-wavelength laser generation. On the basis of considering the optimal power ratio and good spatial overlap of the two fundamental beams, the maximum output power of 589 nm laser reaches 3.5 W when the pumping power of Nd:YAG A and Nd:YAG B are 311.5 W and 261.8 W, respectively. At the same time, the other wavelength lasers are also obtained with the output power distribution of 2.5 W at 66Onto, 15 W at 532nm, lOOmW at 1319nm and 240mW at 1064nm. The corresponding beam quality factors are M^2 x = 4.93, M^2 y = 5.01 at 589nm, M^2z = 4.51, M^2 y = 4.85 at 660hm, and M^2 x = 4.12, M^2 y = 3.96 at 532nm, respectively. The instabilities of the three visible lights are measured, which are also less than 2% within three hours.  相似文献   

13.
The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm^3+-doped BaO-TiO2-SiO2 glass by a focused 800hm, 250 kHz and 150fs femtosecond laser irradiation. No apparent blue and red emissions are observed at the beginning, while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm^3+ are observed near the focal point of the laser beam after irradiation for 25s. Micro-Raman spectra confirm that Ba2 TiSi2O8 crystalline dots and lines are formed after laser irradiation. The mechanism of the phenomenon is discussed.  相似文献   

14.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

15.
The angular distributions of CO^+ from the dissociation of CO2^2+ and CO2^+ in intense femtosecond laser fields (45 fs, about 5 × 10^15 W/cm^2) are studied at a laser wavelength of 800nm based on the time-of-flight mass spectra of CO^+ fragment ions. The experimental results show that structural deformation occurs in the charge state of CO2^2+ and the CO^+ maintains linear geometrical structure.  相似文献   

16.
The optical nonlinear properties of CdSeS/ZnS quantum dots (QDs) areinvestigated by Z-scan technique using fundamental harmonic generation(1064nm) of mode-locked Nd:YAG laser for the first time. The experimental results show that two photon absorptions (TPA) occur at input intensity up to 12.5GW/cm2. CdSeS/ZnS QDs have an average TPA cross section of 13710GM and large nonlinear refractive index on order of 10-7esu. The large optical nonlinearities perhaps allow the CdSeS/ZnS QDs to be one kind of candidate material for bioimaging and fluorescence label, optical limiting and all-optical switching.  相似文献   

17.
Ta2O5 films axe deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2 O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer (XRD) results. X-ray photoelectron spectroscopy (XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2 O5 film achieves the highest laser induced damage threshold (LIDT) either at 355 or 1064nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.  相似文献   

18.
We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 590hm. The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66 × 10^-10 m/W and -2.95 × 10^-17 m^2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.  相似文献   

19.
We investigate the influence of vacuum organic contaminations on laser-induced damage threshold (LIDT) of optical coatings. Anti-reflective (AIR) coatings at 1064 nm made by Ta2 O5/SiO2 are deposited by the ion beam sputtering method. The LIDTs of AR coatings are measured in vacuum and in atmosphere, respectively. It is exhibited that contaminations in vacuum are easily to be absorbed onto optical surface because of lower pressure, and they become origins of damage, resulting in the decrease of LIDT from 24.5J/cm^2 in air to 15.TJ/cm^2 in vacuum. The LIDT of coatings in vacuum has is slightly changed compared with the value in atmosphere after the organic contaminations are wiped off. These results indicate that organic contaminations are the main reason of the LIDT decrease in vacuum. Additionally, damage morphologies have distinct changes from vacuum to atmosphere because of the differences between the residual stress and thermal decomposability of filmy materials.  相似文献   

20.
This paper reports the micromachining of fused quartz and Pyrex glass by laser-induced plasma-assisted ablation (LIPAA) using a conventional nanosecond laser at wavelengths 266 nm, 532 nm, and 1064 nm, respectively. High-quality surface structuring can be achieved at each of these wavelengths. The micrograting formed has periods of 14 7m at 266 nm, 20 7m at 532 nm, and 30 7m at 1064 nm, respectively. The ablation rate using a 266 nm laser is much larger than that at longer wavelengths. The ablation thresholds of laser fluence are 0.7 J/cm2 for 266 nm, 1.5 J/cm2 for 532 nm and 3.7 J/cm2 for 1064 nm, respectively. The 532 nm and 1064 nm lasers enable hole drilling in 0.5 and 2.0-mm thick fused quartz and Pyrex glass substrates of about 0.7-0.8 mm in diameter. However, the less destructive through channel can be only formed in Pyrex glass by using a 532 nm laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号