首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   6篇
物理学   7篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
We report stable narrow linewidth laser systems based on self-developed Littman configuration external cavity diode lasers (ECDLs). The frequency of the ECDL is stabilized to a high fineness ultralow-expansion glass reference cavity with the Pound-Drever-Hall technique. By heterodyne beating of two identical systems, we conclude that the linewidth 4.3× 10^-14 at an averaging measurement time. of each ECDL is reduced to lower than 150 Hz and its frequency stability reaches time of 1 s, the averaged long-term frequency drift is less than 0.2 Hz/s over 30 h  相似文献   
2.
锶原子光晶格钟   总被引:1,自引:0,他引:1       下载免费PDF全文
林弋戈  方占军 《物理学报》2018,67(16):160604-160604
进入21世纪以来,锶原子光晶格钟经历了快速的发展,系统频移的不确定度指标已经超越现有的秒定义基准铯原子喷泉钟,进入到10~(-18)量级,体现了人类精密测量能力的最高水平,是精密测量物理的热点研究内容.本综述简要介绍了锶原子光晶格钟的发展水平;详细介绍了锶原子光晶格钟的各个组成部分和关键技术、如何进行精密光谱探测和闭环锁定以及各项系统频移的不确定度评估方法和锶原子跃迁绝对频率测量的方法等;最后简要介绍了锶光钟的应用和未来发展趋势.  相似文献   
3.
Cold atom clocks have made remarkable progresses in the last two decades and played critical roles in precision measurements. Primary Cs fountain frequency standards have achieved a total uncertainty of a few parts in 1016, and the best optical clock has reached a type B uncertainty below 10-18. Besides applications in the metrology, navigation, etc.,ultra-stable and ultra-accurate atomic clocks have also become powerful tools in the basic scientific investigations. In this paper, we focus on the recent developments in the high-performance cold atomic clocks which can be used as frequency standards to calibrate atomic time scales. The basic principles, performances, and limitations of fountain clocks and optical clocks based on signal trapped ion or neutral atoms are summarized. Their applications in metrology and other areas are briefly introduced.  相似文献   
4.
低噪声微波在冷原子光钟、光子雷达、大科学装置远程同步等领域具有重要的应用价值.本文介绍了一种基于光学-微波相位探测技术的低噪声微波产生方案,利用光纤环路光学-微波鉴相器,将超稳激光的频率稳定度相干传递至介质振荡器.实验采用梳齿相位参考至超稳激光的窄线宽掺铒光纤飞秒光学频率梳,结合光纤环路光学-微波鉴相器和精密锁相装置,将7 GHz介质振荡器同步至光频梳重复频率的高次谐波,同步后的光脉冲序列与微波信号的剩余相位噪声为–100 d Bc/Hz@1 Hz,定时抖动为8.6 fs [1 Hz—1.5 MHz];通过搭建两套低噪声微波产生系统,测得7 GHz微波的剩余相位噪声为–90 d Bc/Hz@1 Hz,对应的频率稳定度为4.8×10–15@1 s.该研究结果对基于光学相干分频的低噪声微波产生提供了一种新思路.  相似文献   
5.
The frequencies of two 698 nm external cavity diode lasers (ECDLs) are locked separately to two independently located ultrahigh finesse optical resonant cavities with the Pound Drever-Hall technique. The linewidth of each ECDL is measured to be -4.6 Hz by their beating and the fractional frequency stability below 5 × 10^-15 between 1 s to lOs averaging time. Another 698nm laser diode is injection locked to one of the cavity-stabilized ECDLs with a fixed frequency offset for power amplification while maintaining its linewidth and frequency characteristics. The frequency drift is H1 Hz/s measured by a femtosecond optical frequency comb based on erbium fiber. The output of the injection slave laser is delivered to the magneto-optical trap of a Sr optical clock through a iO- ta-long single mode polarization maintaining fiber with an active fiber noise cancelation technique to detect the clock transition of Sr atoms.  相似文献   
6.
A clock laser based on a 30-cm-long ultrahigh finesse optical cavity was developed to improve the frequency stability of the Sr optical lattice clock at the National Institute of Metrology. Using this clock laser to probe the spin-polarized~(87)Sr atoms, a Rabi transition linewidth of 1.8 Hz was obtained with 500 ms interrogation time.Two independent digital servos are used to alternatively lock the clock laser to the ~1S_0(m_F=+9∕2)→~3P_0(m_F=+9∕2)transition. The Allan deviation shows that the short-term frequency stability is better than3.2 × 10~(-16)and averages down followed by 1.8 × 10~(-15)∕τ~(1/2).  相似文献   
7.
We report the experimental realization of a ^88Sr magneto-optical trap (MOT) operating at the wavelength of 461 nm. The MOT is loaded via a 32 cm long spin-flip type Zeeman slower which enhances the MOT population by a factor of 22. The total laser power available in our experiment is about 300mW. We have trapped 1.6 × 10^8 ^88 Sr atoms with a 679nm and 707nm repumping laser. The two repumping lasers enhance the trap population and trap lifetime by factors of 11 and 7, respectively. The ^88 Sr cloud has a temperature of about 2.3 mK, measured by recording the time evolution of the absorption signal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号