首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
吴文明 《中国科学A辑》2007,37(11):1283-1290
在上半复平面$\mathbb{H}$上给定双曲测度$dxdy/y^{2}$, 群$G={\rm PSL}_{2}(\mathbb{R})$ 在$\mathbb{H}$上的分式线性作用导出了$G$在Hilbert空间$L^{2}(\mathbb{H}, dxdy/y^{2})$上的酉表示$\alpha$. 证明了交叉积 $\mathcal{R}(\mathcal{A}, \alpha)$是$\mathrm{I}$型von Neumann代数, 其中$\mathcal{A}= \{M_{f}:f\in L^{\infty}(\mathbb{H},dxdy/y^{2} )\}$. 具体地, 交叉积代数$\mathcal{R}(\mathcal{A}, \alpha)$与von Neumann代数$\mathcal{B}(L^{2}(P, \nu))\overline{\otimes}\mathcal{L}_{K}$是*-同构的, 其中$\mathcal{L}_{K}$是$G$中子群 $K$的左正则表示生成的群von Neumann代数.  相似文献   

2.
在这篇文章中,我们通过Hardy算子交换子$\mathrm{H}_b$与它的对偶算子交换子$\mathrm{H}^*_b$, 其中$b\in {\mathrm{CMOL}^{p_2, \lambda}_{\rm rad}L^{p_1}_{\rm ang}(\mathbb R^n)}$,建立了混合径角$\lambda$中心有界平均振荡空间的一个特征.  相似文献   

3.
孙传红  李澎涛 《应用数学》2021,34(1):113-122
令$\mathcal{L}=-{\Delta}_{\mathbb{H}^{n}}+V$为Heisenberg群$\mathbb{H}^{n}$上的Schr\"odinger算子, 其中${\Delta}_{\mathbb{H}^{n}}$为次Laplace算子, 非负位势$V$属于逆H\"{o}lder类. 本文中, 利用从属性公式, 我们给出与$\mathcal{L}$相关的Poisson半群的分数阶导数的正则性估计, 作为应用, 我们得到了与$\mathcal{L}$相关的Campanato型空间的一个刻画.  相似文献   

4.
该文证明带有粗糙核的分数次积分算子的多线性算子\[T_{\Omega,\alpha}^{A}(f)(x)={\rm {\rm p.v.}}\int_{R^{n}}P_{m}(A;x,y)\frac{\Omega(x-y)}{|x-y|^{n-\alpha+m-1}}f(y){\rm d}y\]的$(H^{1}(\rr^{n}),L^{\frac{n}{n-\alpha},\infty}(\rr^{n}))$有界性.  相似文献   

5.
本文研究了单位圆盘上从$L^{\infty}(\mathbb{D})$空间到Bloch型空间 $\mathcal{B}_\alpha$ 一类奇异积分算子$Q_\alpha, \alpha>0$的范数, 该算子可以看成投影算子$P$ 的推广,定义如下$$Q_\alpha f(z)=\alpha \int_{\mathbb{D}}\frac{f(w)}{(1-z\bar{w})^{\alpha+1}}\d A(w),$$ 同时我们也得到了该算子从 $C(\overline{\mathbb{D}})$空间到小Bloch型空间$\mathcal{B}_{\alpha,0}$上的范数.  相似文献   

6.
设$L$为$L^2({{\mathbb R}^n})$上的线性算子且$L$生成的解析半群 $\{e^{-tL}\}_{t\ge 0}$的核满足Poisson型上界估计, 其衰减性由$\theta(L)\in(0,\infty)$刻画. 又设$\omega$为定义在$(0,\infty)$上的$1$-\!上型及临界 $\widetilde p_0(\omega)$-\!下型函数, 其中 $\widetilde p_0(\omega)\in (n/(n+\theta(L)), 1]$. 并记 $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$, 其中$t\in (0,\infty).$ 本文引入了一类 Orlicz-Hardy空间 $H_{\omega,\,L}({\mathbb R}^n)$及 $\mathrm{BMO}$-\!型空间${\mathrm{BMO}_{\rho,\,L} ({\mathbb R}^n)}$, 并建立了关于${\mathrm{BMO}_{\rho,\,L}({\mathbb R}^n)}$函数的John-Nirenberg不等式及 $H_{\omega,\,L}({\mathbb R}^n)$与 $\mathrm{BMO}_{\rho,\,L^\ast}({\mathbb R}^n)$的对偶关系, 其中 $L^\ast$为$L$在$L^2({\mathbb R}^n)$中的共轭算子. 利用该对偶关系, 本文进一步获得了$\mathrm{BMO}_{\rho,\,L^\ast}(\rn)$的$\ro$-\!Carleson 测度特征及 $H_{\omega,\,L}({\mathbb R}^n)$的分子特征, 并通过后者建立了广义分数次积分算子 $L^{-\gamma}_\rho$从$H_{\omega,\,L}({\mathbb R}^n)$到 $H_L^1({\mathbb R}^n)$或$L^q({\mathbb R}^n)$的有界性, 其中$q>1$, $H_L^1({\mathbb R}^n)$为Auscher, Duong 和 McIntosh引入的Hardy空间. 如取$\omega(t)=t^p$,其中$t\in(0,\infty)$及$p\in(n/(n+\theta(L)), 1]$, 则所得结果推广了已有的结果.  相似文献   

7.
2×2阶上三角型算子矩阵的Moore-Penrose谱   总被引:2,自引:1,他引:1  
设$H_{1}$和$H_{2}$是无穷维可分Hilbert空间. 用$M_{C}$表示$H_{1}\oplusH_{2}$上的2$\times$2阶上三角型算子矩阵$\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. 对给定的算子$A\in{\mathcal{B}}(H_{1})$和$B\in{\mathcal{B}}(H_{2})$,描述了集合$\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$与$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$,其中$\sigma_{M}(\cdot)$表示Moore-Penrose谱.  相似文献   

8.
设~$G=KP$, 其中~$K$是有限生成的~$p’$-\!自由的幂零群, $P$ 是有限秩的幂零~$p$-\!群, 并且~$[K,P]=1$, 即~$G$ 是~$K$ 和~$P$ 的中心积, $\alpha$ 和~$\beta$是~$G$ 的两个~$p$-\!自同构, 记~$I:=\langle\left(\alpha\beta(g)\right)\cdot\left(\beta\alpha(g)\right)^{-1} \,|\, g\in G \rangle$, 则 {\rm(i)} 当~$I=Z_{p^n}\oplus Z_{p^{\infty}}$ 时, $\alpha$ 和~$\beta$生成一个可解的剩余有限~$p$-\!群, 它是有限生成的无挠幂零群被有限~$p$-\! 群的扩张; 在下列3种情形下, $\alpha$ 和~$\beta$生成一个可解的剩余有限~$p$-\!群, 其幂零长度不超过~$3$. {\rm(ii)} 当~$I=Z\oplus Z_{p^{\infty}}$ 时; {\rm(iii)} 当$I$ 有正规列~$1< J< I$, 其商因子分别为无限循环群和有限循环群时; {\rm(iv)} 当~$I$ 有正规列~$1< L< J< I$, 其3个商因子分别为无限循环群、有限循环群和拟循环~$p$-\!群时. 特别地, 当上述群~$K$ 是一个~$FC$-群时, $\alpha$ 和~$\beta$ 生成的群是有限生成的无挠幂零群被有限~$p$-\!群的扩张.  相似文献   

9.
10.
杨忠强  吴拿达 《中国科学A辑》2008,38(10):1168-1182
设$(X,\rho)$是一个度量空间. 用$\dd {\rm USCC}(X)$和$\dd {\rm CC}(X)$ 分别表示从$X$ 到 $\I=[0,1]$的紧支撑的上半连续函数和紧支撑的连续函数下方图形全体. 赋予 Hausdorff 度量后, 它们是拓扑空间. 文中证明了, 如果 $X$ 是一个无限的且孤立点集稠密的紧度量空间, 则 $(\dd {\rm USCC}(X),\dd {\rm CC}(X))\approx(Q,c_0\cup (Q\setminus \Sigma))$, 即存在一个同胚 $h:~\dd {\rm USCC}(X)\to Q$, 使得 $h(\dd {\rm CC}(X))=c_0\cup (Q\setminus \Sigma)$, 这里 $Q=[-1,1]^{\omega},\,\Sigma=\{(x_n)_{n}\in Q: {\rm sup}|x_n|<1\},\, c_0=\Big\{(x_n)_{n}\in \Sigma: \lim\limits_{n\to +\infty}x_n=0\Big\}.$ 结合这个论断和另一篇文章的结果, 可以得到: 如果 $X$ 是一个无限的紧度量空间, 则 $(\uscc(X), \cc(X))\approx \left\{ \begin{array}{ll} (Q,c_0\cup (Q\setminus \Sigma)), &;\quad \text{如 果 孤 立 点 集 在} X \text{中稠密},\\ (Q, c_0), &;\quad \text{ 其他}. \end{array} \right.$ 还证明了, 对一个度量空间$X$, $(\dd {\rm USCC}(X),\dd {\rm CC}(X))\approx (\Sigma,c_0)$ 当且仅当 $X$是一个非紧的、局部紧的、非离散的可分空间.  相似文献   

11.
本文引入算子代数的性质${\Pi}_\sigma$这一概念,证明了任一 vonNeumann代数中的套子代数和有限宽度CSL子代数都具有性质$\Pi_\sigma.$最后得到张量积公式$\mbox{alg}_{\cal M}{\cal L}_1\overline{\otimes}\mbox{alg}_{\cal N}{\cal L}_2= \mbox{alg}_{{\cal M}\overline{\otimes}{\cal N}}({\cal L}_1\otimes{\cal L}_2)$成立,这里${\cal L}_1$和 ${\cal L}_2$分别是von Neumann代数${\cal M}$和${\cal N}$中的有限宽度CSL.  相似文献   

12.
$A_{1}$型扩张仿射Lie代数的分类依赖于从Euclid空间中的半格构造得到的TKK代数. Allison等从${\mathbb {R}}^{\nu}(\nu\geq1)$的一个半格出发, 定义了一类Jordan代数. 然后通过所谓的Tits-Kantor-Koecher方法构造出TKK代数${\cal{T}}({\cal J}(S))$, 最后得到$A_{1}$型扩张仿射Lie代数. 在${\mathbb{R}}^{2}$中, 只有两个不相似的半格$S$和$S’$, 其中$S$是格而$S’$是非格半格. 本文主要研究TKK代数${\cal{T}}({\cal J}(S))$的${\mathbb {Z}}^{2}$-分次自同构.  相似文献   

13.
本文应用新的$K$-泛函$K_{\lambda}^{\alpha}(f,t^2)=\inf_{g\in C_{\lambda}^2}\{\|f-g\|_0+t^2\|g\|_2\}, ~~0\leq \lambda\leq 1, 0<\alpha<2,$得到了Sz\'{a}sz算子关于$K$-泛函的强逆不等式,其中$\|\cdot\|_{0}, \|\cdot\|_2, C_\lambda^2 $定义在文中给出. 作为其应用, 我们推广了以前的结果.  相似文献   

14.
令\{$X$, $X_n$, $n\ge 1$\}是期望为${\mathbb{E}}X=(0,\ldots,0)_{m\times 1}$和协方差阵为${\rm Cov}(X,X)=\sigma^2I_m$的独立同分布的随机向量列, 记$S_n=\sum_{i=1}^{n}X_i$, $n\ge 1$. 对任意$d>0$和$a_n=o((\log\log n)^{-d})$, 本文研究了${{\mathbb{P}}(|S_n|\ge (\varepsilon+a_n)\sigma \sqrt{n}(\log\log n)^d)$的一类加权无穷级数的重对数广义律的精确速率.  相似文献   

15.
对加权Dirichlet空间${\cal D}_{\alpha}=\left\{f\in H(D) ; ||f||_{{\cal D}_{\alpha}}^{2}=|f(0)|^{2}+\int_{D}|f'(z)|^{2}(1-|z|)^{\alpha}\d m(z)<+\infty \right\},~~-1<\alpha<+\infty,$我们研究了其上一般Ces$\grave{a}$ro算子的有界性. 此处$H(D)$表示复平面单位圆盘$D$上全纯函数的全体.  相似文献   

16.
设$\mathcal {A,\ B}$ 是含单位元的Banach代数, $\mathcal M$ 是一个Banach $\mathcal {A,\ B}$-双模. $\mathcal {T}=\left ( \begin{array}{cc} \mathcal {A} & \mathcal M \\ & \mathcal {B} \\ \end{array} \right )$按照通常矩阵加法和乘法,范数定义为$\|\left( \begin{array}{cc} a & m \\ & b\\ \end{array} \right)\|=\|a\|_{\mathcal A}+\|m\|_{\mathcal M}+\|b\|_{\mathcal B}$,构成三角Banach 代数.如果从$\mathcal T$到其$n$次对偶空间$\mathcal T^{n}$上的Lie导子都是标准的,则称$\mathcal T$是Lie $n$弱顺从的.本文研究了三角Banach代数$\mathcal T$上的Lie $n$弱顺从性,证明了有限维套代数是Lie $n$弱顺从的.  相似文献   

17.
本文研究了单位圆盘$\mathbb{D}$上的一个积分算子,定义如下$Kf(z)=\int_{\mathbb{D}}\frac{f(w)}{1-z\bar{w}}{\rm d}A(w)$, 该算子可以看作经典Bergman投影的姐妹算子,同时我们得到了该算子关于Bloch型空间, $H^{\infty}$空间以及$L^{p}$空间之间有界的充分必要条件.  相似文献   

18.
本文引进了无限维辫子Hopf代数$H$的忠实拟对偶$H^d$和严格拟对偶$H^{d'}$.证明了每个严格拟对偶$H^{d'}$是一个$H$-Hopf 模. 发现了$H^{d}$的极大有理$H^{d}$-子模$H^{d {\rm rat} }$ 与积分的关系, 即: $H^{d {\rm rat}}\cong \int ^l_{H^d} \otimes H$.给出了在Yetter-Drinfeld范畴$(^B_B{\cal YD},C)$中的辫子Hopf代数的积分的存在性和唯一性.  相似文献   

19.
It is demonstrated that under the hypotheses I—III the problem $\[\left\{ {\begin{array}{*{20}{c}} {div((k(U) + \varepsilon )|DU{|^{M - 1}}DU) = f(|x|,U) + \varepsilon U{\text{ }}in{\text{ }}{R^N},N > 1,{\text{ (1}}{\text{.1}}{{\text{)}}_\varepsilon }} \ {U(0) > 0,U(x) \geqslant 0{\text{ on }}{R^N},U(x) \to 0{\text{ as }}|x| \to + \infty {\text{ }}(1.2)} \end{array}} \right.\]$ for each fixed $\epsilon >0$ has infinitely many distinct radially symmetric solutions $U_\epsilon=V_\epsilon(|x|)$ such that $V_\epsilon(s),s^{N-1}(k(V_\epsilon(s))+\epsilon)|V''(s)|^{M-1}V''_\epsilon(s)\in C[0,+\infinity)\capC^1(0,+\infinity)$, $\[\left\{ {\begin{array}{*{20}{c}} {({s^{N - 1}}(k({V_\varepsilon }(s)) + \varepsilon )|V''(s){|^{M - 1}}V''(s)) = {\varepsilon ^{N - 1}}(f(s,{V_\varepsilon }(s)) + \varepsilon {V_\varepsilon }(s))for{\text{ }}s > 0,{{(1.3)}_\varepsilon }} \ {{V_\varepsilon }(0) = B > 0,{V_\varepsilon }(s) \geqslant 0{\text{ for }}s > 0,and{\text{ }}{V_\varepsilon }( + \infty ) = 0,(1.4)} \end{array}} \right.\]$ where B is a positive number chosen arbitrarily, which extends the result in [3]. In particular, the author proves that $U_0(x)=V_0(|x|)$ is a weak solution of the problem $(l.l)_0-(1.2)$.  相似文献   

20.
1谱位于平面上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子 记号与[1,2]相同,不再一一赘述.设序列 {Mk}满足(M.1),(M.2),(M.3)即.对数凸性、非拟解析性、可微性[1]. 由{M(k)}我们可以 定义二元相关函数\[M({t_1},{t_2})\](详见[7])以及二元\[{\mathcal{D}_{ < {M_k} > }}\]空间 \[{\mathcal{D}_{ < {M_k} > }} = \{ \varphi |\varphi \in \mathcal{D};\exists \nu ,st{\left\| \varphi \right\|_\nu } = \mathop {\sup }\limits_\begin{subarray}{l} s \in {R^2} \\ {k_i} \geqslant 0 \\ (i = 1,2) \end{subarray} |\frac{{{\partial ^{{k_1} + {k_2}}}}}{{{\partial ^{{k_1}}}{s_1}\partial _{{s_2}}^{{k_2}}}}\varphi (s)|/{\nu ^k}{M_k} < + \infty \} \] 其中\[s = ({s_1},{s_2})k = {k_1} + {k_2}\].关于谱位于复平面上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子的定义及性质可 参看[3,4].设X为Banach空间,B(X)为X上有界线性算子的全体组成的环.当 \[T \in B(X)\]为\[{\mathcal{D}_{ < {M_k} > }}\]型算子时,有\[T = {T_1} + i{T_2};{T_1} = {U_{Ret}}{T_2}{\text{ = }}{U_{\operatorname{Im} {\kern 1pt} t}}\] ,此处U为T的谱超广义函数,t为复变量.由于supp(U)为紧集,故可将U延拓到\[{\varepsilon _{ < {M_k} > }}\]上且保持连续性. 经过简单的计算,若\[T \in B(X)\]为谱位于平面上的一个\[{\mathcal{D}_{ < {M_k} > }}\]型算子,则T的一个谱 超广义函数(1)U可表成 \[{U_\varphi } = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {{e^{i({t_1}{T_1} + {t_2}{T_2})}}\hat \varphi } } ({t_1},{t_2})d{t_1}d{t_2}\] 设\[T \in B(X)\]为谱算子,S、N、E(.)分别为T的标量部分、根部、谱测度.下面的定理给出了谱算子成为\[{\mathcal{D}_{ < {M_k} > }}\]型算子的一个充分条件: 定理1设T为谱算子适合下面的条件 \[\mathop {\sup }\limits_{k > 0} \mathop {\sup }\limits_\begin{subarray}{l} |{\mu _j}| < 1 \\ {\delta _j} \in \mathcal{B} \\ j = 1,2,...,k \end{subarray} {(\left\| {\frac{{{N^n}}}{{n!}}\sum\limits_{j = 1}^k {{\mu _j}E({\delta _j})} } \right\|{M_n})^{\frac{1}{n}}} \to 0(n \to \infty )\] 其中\[\mathcal{B}\]为平面本的Borel集类.则T为\[{\mathcal{D}_{ < {M_k} > }}\]型算子且它的一个谱广义函数可表为 \[{U_\varphi } = \sum\limits_{n = 0}^\infty {\frac{{{N^n}}}{{n!}}} \int {{\partial ^n}} \varphi (s)dE(s)\] 推论1设E(?),N满足 \[{(\frac{{{M_n}}}{{n!}} \vee ({N^n}E))^{\frac{1}{n}}} \to 0\] 则T为\[{\mathcal{D}_{ < {M_k} > }}\]型算子. 推论2设N为广义幂零算子,则对于任何与N可换的标量算子S,S+N为\[{\mathcal{D}_{ < {M_k} > }}\]型算子的充分必要条件是 \[{(\frac{{\left\| {{N^n}} \right\|}}{{n!}}{M_n})^{\frac{1}{n}}} \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (n \to \infty )\] 在[4]中称满足上式的算子为\[\{ {M_k}\} \]广义幂零算子.显然\[\{ {M_k}\} \]广义幂零算子必为通 常的广义幂零算子.下面的命题给出了\[\{ {M_k}\} \] 广义幂零算子的一些性质. 命题 设N为广义幂零算子,则下列事实等价: (i ) N为\[\{ {M_k}\} \]广义幂零算子; (ii)对于任给的\[\lambda > 0\],存在\[{B_\lambda } > 0\]使(1) \[\left\| {R(\xi ,N)} \right\| \leqslant {B_\lambda }{e^{{M^*}(\frac{\lambda }{{|\xi |}})}}\](\[{|\xi |}\]充分小); (iii)对于任给的\[\mu > 0\],存在\[{A_\mu } > 0\]使 \[\left\| {{e^{izN}}} \right\| \leqslant {A_\mu }{e^{M(\mu |z|)}}\] 2谱位于实轴上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子本节讨论有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子T成为谱算子 的条件,这里假定\[{\mathcal{D}_{ < {M_k} > }}\]中的函数是一元的,于是Т的谱位于实轴上.X*表示X的共轭 空间. 设\[f \in {\mathcal{D}^'}_{ < {M_k} > }\],由[8, 9],存在测度\[{\mu _n}(n \geqslant 0)\]使得对任何h>0,存在A>0适合 \[\sum\limits_{n = 0}^\infty {\frac{{{h^n}}}{{n!}}} {M_n}\int {|d{\mu _n}| \leqslant A} \]且 \[ < f,\varphi > = \sum\limits_{n = 0}^\infty {\frac{1}{{n!}}} \int {{\varphi ^{(n)}}} (t)d{\mu _n}(t)\] 一般说,上述\[{\mu _n}(n \geqslant 0)\]不是唯一的,为此我们引入 定义设\[{n_0}\]为正整,如果对一切\[n \geqslant {n_0}\],存在测度\[{{\mu _n}}\],它们的支集均包含在某一L 零测度闭集内,则称f是\[{n_0}\]奇异的,若\[{n_0}\] = 1,则称f是奇异的.设\[T \in B(X)\]为\[{\mathcal{D}_{ < {M_k} > }}\]型 算子,U为其谱超广义函数,如果对于任何\[x \in X{x^*} \in {X^*},{x^*}U\].x是\[{n_0}\]奇异的(奇异 的),则称T是\[{n_0}\]奇异的(奇异的)\[{\mathcal{D}_{ < {M_k} > }}\]型算子. 经过若干准备,可以证明下面的 定理2 设X为自反的Banach空间,则\[T \in B(X)\]为奇异\[{\mathcal{D}_{ < {M_k} > }}\]型算子的充分必要 条件是T为满足下列条件的谱算子: (i)对每个\[x \in X\]及\[{x^*} \in X\],\[\sup p({x^*}{N^n}E()x)\]包含在一个与\[n \geqslant 1\]无关的L零测 度闭集F内(F可以依赖于\[x{x^*}\]),此处E(?)、N分别是T的谱测度与根部; (ii)算子N是\[\{ {M_k}\} \]广义幂零算子. 推论 设X为自反的banach空间,\[T \in B(X)\]为奇异\[{\mathcal{D}_{ < {M_k} > }}\]型算子且\[\sigma (T)\]的测度 为零的充分必要条件是T为满足下列条件的谱算子: (i) E(?)的支集为L零测度集; (ii) 算子N是\[\{ {M_k}\} \]广义幂零算子.;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号