首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   7篇
  国内免费   56篇
化学   64篇
晶体学   2篇
力学   4篇
综合类   3篇
数学   16篇
物理学   33篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   8篇
  2016年   6篇
  2015年   2篇
  2014年   8篇
  2013年   11篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2002年   4篇
  2001年   2篇
  1997年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
1.
通过本体聚合方法合成了一系列侧链含苯酰亚胺结构的聚对苯二甲酸乙二酯(PET)共聚酯.研究发现,苯酰亚胺单元的引入不仅提高了共聚酯的玻璃化转变温度(T_g)和高温成炭性,并且大大降低了共聚酯高温下的热分解速率.随着苯酰亚胺含量的增加,共聚酯表现出更高的氧指数(LOI)值和更好的阻燃抗熔滴效果.锥形量热测试结果表明,苯酰亚胺结构的引入可以有效地降低共聚酯的峰值热释放速率(p-HRR)、峰值烟释放速率(p-RSR)和总烟释放量(TSR).通过对纯PET和共聚酯燃烧测试后残炭的结构和形貌分析,发现苯酰亚胺结构有助于共聚酯形成石墨化程度更高的致密炭层,这些炭层起到隔热隔氧和抑制有机可燃烟气挥发的作用,在不引入传统阻燃剂的情况下,赋予共聚酯很好的本征阻燃性及抑烟性.  相似文献   
2.
基于量子化学密度泛函理论研究了NO与CO、NCO在均相条件下的反应机理并进行了动力学和平衡常数的分析. CO与NO的均相反应存在两条反应路径:两者首先反应形成中间体CNO2,CNO2不易稳定存在,其继续与CO、NO反应分别生成NCO、N2O. NCO的生成速率大于N2O,但两条反应路径的反应速率常数都很小.与已发现的反应路径相比,反应中间体CNO2可以降低均相条件下CO与NO的反应能垒,分析发现CNO2中的N原子是易发生反应的活性位点. NCO与NO的反应同样存在两条路径,优势反应路径随温度升高而改变,但非优势路径对反应的贡献不能忽略,分析平衡常数可知N2的存在对反应影响可以忽略,因此燃烧环境中NCO与NO的反应既生成N2O和CO,也生成N2和CO2.  相似文献   
3.
分子张力作为空间设计的重要组成部分正成为调控有机半导体的重要手段。由于分子内产生的拉伸张力、扭曲/弯曲张力以及空间张力而导致p轨道排布重组和构型构象结构发生变化,最近各种几何与拓扑结构的高张力有机半导体材料相继被报道,这使得高张力有机半导体材料成为有机电子领域研究的焦点。为了进一步梳理分子张力在有机半导体材料中扮演的角色与价值,该综述从分子张力的类型、实验与理论量化以及可视化出发,总结了高张力共轭芳烃的分子设计策略、与其光电性能分子张力之间的关系,以及这类新兴材料在光电领域的应用。最后,对高张力共轭芳烃的研究前景进行了展望,阐述了该类材料所面临的机遇与挑战。  相似文献   
4.
针对启普发生器使用过程中存在液体使用量大、反应溶液利用效率低、安全性差等问题,研制了一种新型的气体发生器。该装置由储液杯、流量调节器、排气管和反应容器组成。利用流量调节器将反应液滴加到固体药品上,固-液反应充分,排出的废液基本不含反应试剂,大大减少了液体药品的用量。实验结果表明,该新型制气装置具有液体试剂用量少、利用效率高、安全性能优良、操作方便,同时兼具随开随用等特点,可有效地应用于化学实验教学中。  相似文献   
5.
二氧化钛(TiO2)光催化技术作为一种绿色、洁净、节能的技术,在污染物治理、光分解水制氢、抗菌环保等领域有着广泛的应用。然而TiO2材料本身大的禁带宽度(Eg=3.2eV)阻碍了其实际应用,进而导致其可见光利用率低、量子产率低。因此制备具有高量子产率且对可见光有快速响应能力的TiO2已成为当前光催化剂研究的关键课题。国内外关于TiO2光催化剂的改性技术逐渐完善并在制备方法、材料形貌和结构控制等方面有新的突破。本文综述了TiO2光催化的制备方法及其反应机理,总结了提高TiO2光催化性能的技术路线,阐明了针对TiO2改性的各种方法的原理及关键技术,同时对TiO2光催化技术存在的问题和发展前景进行了分析和展望。  相似文献   
6.
采用水热法合成了1个二维缠结金属有机框架化合物[Cu(bbi)0.5(boba)]n(1)(bbi=1,1′-(1,4-丁烷基)-二(咪唑);H2boba=4,4′-(丁烷-1,4-二氧基)-二苯甲酸),并通过元素分析、红外光谱和单晶X-射线衍射对其进行了结构表征。结构分析显示:化合物1是具有聚轮烷和聚锁烃结构特征的三重平行穿插网络。此外还研究了它的荧光和热稳定性。  相似文献   
7.
采用含氮双膦配体与无水氯化钴反应可制得一系列相应的(P^N^P)钴配合物,并研究了该系列钴配合物对苯乙烯聚合的催化性能.在助催化剂倍半氯化乙基铝(EASC)的活化下,该系列钴配合物对甲苯中的苯乙烯溶液聚合表现出高的催化活性(可达5.44×105g(PS)·mol-1(Co)·h-1).通过对不同苯乙烯单体用量、助催化剂用量(Al/Co摩尔比)、聚合温度以及催化剂的配体环境等的研究,详细考察了这些因素对聚合反应和聚合产物性能的影响.通过凝胶渗透色谱法(GPC)和核磁共振碳谱(13C-NMR)表征了所得聚合产物的分子量及分子量分布和微观结构,分析结果表明,所得聚苯乙烯具有较低的分子量(Mn=2000~5900)和较窄的分子量分布(1.75~2.05),其微观结构是无规的.  相似文献   
8.
胺化葡萄糖及其铜配合物的光谱特性   总被引:1,自引:0,他引:1  
研究了胺化D-葡萄糖的FTIR,1H-NMR特性及其与Cu(Ⅱ)形成配合物的UV光谱。在FTIR谱中,与D-葡萄糖相比,在1 629~1 608 cm-1出现δNH吸收峰,说明D-葡萄糖与乙二胺发生了反应;在1H-NMR谱中,在δ4.82~4.79的化学位移分别对应于葡萄糖C1上的质子及与C1直接相连的乙二胺的氨基上的质子,表明反应时乙二胺取代了葡萄糖C1上的羟基,形成了胺化葡萄糖;在UV谱中,胺化葡萄糖在紫外光区并没有明显吸收,但与Cu(Ⅱ)形成配合物后,在236 nm附近出现最大吸收峰。在胺化葡萄糖-Cu(Ⅱ)配合物中,Cu2 与胺化葡萄糖的络合比接近于1∶1,该配合物稳定常数6.8×107L.mol-1。  相似文献   
9.
A new three-dimensional(3D) coordination polymer, [Cd(L)2H2O]n·5nH2O 1 with 4-[(3-pyridyl)methylamino]benzoate acid(HL), has been synthesized by slow evaporation solvent at room temperature, and structurally characterized by elemental analysis, IR spectrum, thermal analysis, fluorescence spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal system, space group I-4, with a = 20.7937(16), c = 13.515(2), V = 5843.5(11) 3, C26H34CdN4O10, Mr = 674.97, Dc = 1.534 g/cm3, μ(MoKα) = 0.808 mm-1, F(000) = 2768, Z = 8, the final R = 0.0276 and wR = 0.0691 for 5323 observed reflections(I 2σ(I)). The result of thermal analysis shows that 1 is stable under 290 ℃. Moreover, it exhibits blue photoluminescence at room temperature.  相似文献   
10.
丰翠  闵曼  谢蓉蓉  任建辉  陈琳 《应用化学》2018,35(5):538-543
以2,3,4-三甲氧基苯甲醛为原料,经脱甲基、Knoevenagel缩合、亲核加成等反应合成了2个香豆素基Schiff碱类化合物,其结构经核磁共振谱(1H NMR))和质谱(MS)确证。并采用淬灭二苯代苦味肼基自由基(DPPH)、2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)和羟自由基等方法对其体外抗氧化性能进行了表征。结果表明,目标化合物对3种自由基均具有一定的淬灭活性,其中对DPPH和羟自由基的淬灭活性高于母体化合物7,8-二甲氧基-3-氨基香豆素,具有较高的抗氧化活性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号