首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
本文研究了单位圆盘$\mathbb{D}$上的一个积分算子,定义如下$Kf(z)=\int_{\mathbb{D}}\frac{f(w)}{1-z\bar{w}}{\rm d}A(w)$, 该算子可以看作经典Bergman投影的姐妹算子,同时我们得到了该算子关于Bloch型空间, $H^{\infty}$空间以及$L^{p}$空间之间有界的充分必要条件.  相似文献   

2.
吴文明 《中国科学A辑》2007,37(11):1283-1290
在上半复平面$\mathbb{H}$上给定双曲测度$dxdy/y^{2}$, 群$G={\rm PSL}_{2}(\mathbb{R})$ 在$\mathbb{H}$上的分式线性作用导出了$G$在Hilbert空间$L^{2}(\mathbb{H}, dxdy/y^{2})$上的酉表示$\alpha$. 证明了交叉积 $\mathcal{R}(\mathcal{A}, \alpha)$是$\mathrm{I}$型von Neumann代数, 其中$\mathcal{A}= \{M_{f}:f\in L^{\infty}(\mathbb{H},dxdy/y^{2} )\}$. 具体地, 交叉积代数$\mathcal{R}(\mathcal{A}, \alpha)$与von Neumann代数$\mathcal{B}(L^{2}(P, \nu))\overline{\otimes}\mathcal{L}_{K}$是*-同构的, 其中$\mathcal{L}_{K}$是$G$中子群 $K$的左正则表示生成的群von Neumann代数.  相似文献   

3.
设$H(\mathbb{B})$为单位球上全纯函数类,研究了单位球上 Zygmund 空间到 Bloch 空间上径向导数算子$\Re$与积分型算子$I_\varphi^g$乘积的有界性和紧性, 这里 $$ I_\varphi^g f(z)=\int_0^1 \Re f(\varphi(tz))g(tz)\frac{{\rm d}t}{t},\quad z\in\mathbb{B}, $$ 其中$g\in H(\mathbb{B}),\ g(0)=0$, $\varphi$ 是$\mathbb{B}$上全纯自映射.  相似文献   

4.
设$L$为$L^2({{\mathbb R}^n})$上的线性算子且$L$生成的解析半群 $\{e^{-tL}\}_{t\ge 0}$的核满足Poisson型上界估计, 其衰减性由$\theta(L)\in(0,\infty)$刻画. 又设$\omega$为定义在$(0,\infty)$上的$1$-\!上型及临界 $\widetilde p_0(\omega)$-\!下型函数, 其中 $\widetilde p_0(\omega)\in (n/(n+\theta(L)), 1]$. 并记 $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$, 其中$t\in (0,\infty).$ 本文引入了一类 Orlicz-Hardy空间 $H_{\omega,\,L}({\mathbb R}^n)$及 $\mathrm{BMO}$-\!型空间${\mathrm{BMO}_{\rho,\,L} ({\mathbb R}^n)}$, 并建立了关于${\mathrm{BMO}_{\rho,\,L}({\mathbb R}^n)}$函数的John-Nirenberg不等式及 $H_{\omega,\,L}({\mathbb R}^n)$与 $\mathrm{BMO}_{\rho,\,L^\ast}({\mathbb R}^n)$的对偶关系, 其中 $L^\ast$为$L$在$L^2({\mathbb R}^n)$中的共轭算子. 利用该对偶关系, 本文进一步获得了$\mathrm{BMO}_{\rho,\,L^\ast}(\rn)$的$\ro$-\!Carleson 测度特征及 $H_{\omega,\,L}({\mathbb R}^n)$的分子特征, 并通过后者建立了广义分数次积分算子 $L^{-\gamma}_\rho$从$H_{\omega,\,L}({\mathbb R}^n)$到 $H_L^1({\mathbb R}^n)$或$L^q({\mathbb R}^n)$的有界性, 其中$q>1$, $H_L^1({\mathbb R}^n)$为Auscher, Duong 和 McIntosh引入的Hardy空间. 如取$\omega(t)=t^p$,其中$t\in(0,\infty)$及$p\in(n/(n+\theta(L)), 1]$, 则所得结果推广了已有的结果.  相似文献   

5.
孙传红  李澎涛 《应用数学》2021,34(1):113-122
令$\mathcal{L}=-{\Delta}_{\mathbb{H}^{n}}+V$为Heisenberg群$\mathbb{H}^{n}$上的Schr\"odinger算子, 其中${\Delta}_{\mathbb{H}^{n}}$为次Laplace算子, 非负位势$V$属于逆H\"{o}lder类. 本文中, 利用从属性公式, 我们给出与$\mathcal{L}$相关的Poisson半群的分数阶导数的正则性估计, 作为应用, 我们得到了与$\mathcal{L}$相关的Campanato型空间的一个刻画.  相似文献   

6.
令$S(p)$表示单位圆盘$\mathbb{D}$上在$p\in(0,1)$处有一个简单极点的单叶亚纯函数全体.令$\alpha\in[0,1)$,我们用$\Sigma^{*}(p,\omega_{0},\alpha)$表示$f\in S(p)$使得$\hat{\mathbb{C}}\setminus f(\mathbb{D})$是关于不动点$\omega_{0}\neq0$, $\infty$星象的$\alphga$阶区域的函数全体.在本文中,$f\in\Sigma^{*}(p,\omega_{0},\alpha)$的一些解析刻画条件和系数估计被考虑.  相似文献   

7.
设Q2=[0, 1]2是Eulid空间$\R^2$上的单位正方形, ${\mathcal{T}}_{\alpha,\beta}$是如下定义在Schwartz函数类${\mathcal{S}}(\R^3)$上振荡奇异积分算子
${\mathcal{T}}_{\alpha, \beta}f(x,y,z)=\int_{Q^2}f(x-t,y-s,z-t^ks^j)e^{-it^{-\beta_1}s^{-\beta_2}}t^{-1-\alpha_1} s^{-1-\alpha_2}dtds.
$
本文首先建立了该算子的Lp有界性, 然后利用这些结果获得了乘积空间上的一些奇异积分算子的(p, p)有界性.  相似文献   

8.
本文中, 我们主要刻画了Toeplitz算子$T=M_{z^k}+M^*_{z^l}$的约化子空间, 其中 $k_i, l_i$ ($i=1,2$) 均是正整数, $k=(k_1,k_2), l=(l_1,l_2)$ 且 $k\neq l$, $M_{z^k}$, $M_{z^l}$ 是双圆盘加权Hardy空间$\mathcal{H}_\omega^2(\mathbb{D}^2)$上的乘法算子. 对权系数 $\omega$ 适当限制, 我们证明了由 $z^m$ 生成的 $T$ 的约化子空间均是极小的. 特别地, Bergman 空间和加权 Dirichlet 空间 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 均是满足该限制条件的加权Hardy空间. 作为应用, 我们刻画了 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 上 Toeplitz 算子 $T_{z^k+\bar{z}^l}$ 的约化子空间, 该结论是对双圆盘Bergman 空间上相关结论的推广.  相似文献   

9.
本文首先引入满足如下条件$$-\frac{qzD_{q}f(z)}{f(z)}\prec \varphi (z)$$和$$\frac{-(1-\frac{\alpha }{q})qzD_{q}f(z)+\alpha qzD_{q}[zD_{q}f(z)]}{(1-\frac{\alpha}{q})f(z)-\alpha zD_{q}f(z)}\prec \varphi (z)~(\alpha \in\mathbb{C}\backslash (0,1],\ 0相似文献   

10.
2×2阶上三角型算子矩阵的Moore-Penrose谱   总被引:2,自引:1,他引:1  
设$H_{1}$和$H_{2}$是无穷维可分Hilbert空间. 用$M_{C}$表示$H_{1}\oplusH_{2}$上的2$\times$2阶上三角型算子矩阵$\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. 对给定的算子$A\in{\mathcal{B}}(H_{1})$和$B\in{\mathcal{B}}(H_{2})$,描述了集合$\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$与$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$,其中$\sigma_{M}(\cdot)$表示Moore-Penrose谱.  相似文献   

11.
设核函数K(u,v)具有对称性和齐次性,对如下定义的奇异重积分算子T:(Tf)(y)=∫R_+~n K(‖x‖α,‖y‖α)f(x)dx,y∈R_+~n,其中‖x‖α=(x_1~α+…+x_n~α)~1/α(α>0),研究了T的范数及其应用.  相似文献   

12.
Let Bs(H) be the real linear space of all self-adjoint operators on a complex Hilbert space H with dim H ≥ 2.It is proved that a linear surjective map on Bs (H) preserves the nonzero projections of Jordan products of two operators if and only if there is a unitary or an anti-unitary operator U on H such that (X)=λU XU,X∈Bs(H) for some constant λ with λ∈{1,1}.  相似文献   

13.
研究了欧氏空间R~2中单位方体Q~2=[0,1]~2上沿曲面(t,s,γ(t,s))的振荡奇异积分算子T_(α,β)f(u,v,x)=∫_(Q~2)f(u-t,v-s,x-γ(t,s))e~(it~(-β_1)s~(-β_2))t~(-1-α_1)s~(-1-α_2)dtds从Sobolev空间L_τ~p(R~(2+n))到L~p(R~(2+n))中的有界性,其中x∈R~n,(u,v)∈R~2,(t,s,γ(t,s))=(t,s,t~(P_1)s~(q_1),t~(p_2)s~(q_2),…,t~(p_n)s~(q_n))为R~(2+n)上一个曲面,且β_1α_1≥0,β_2α_20.这些结果推广和改进了R~3上的某些已知的结果.作为应用,得到了乘积空间上粗糖核奇异积分算子的Sobolev有界性.  相似文献   

14.
考虑了R~n上n(n≥2)维向列型液晶流(u,d)当初值属于Q_α~(-1)(R~n,R~n)×Q_α(R~n,S~2)(其中α∈(0,1))时Cauchy问题的适定性,这里的Q_α(R~n)最早由Essen,Janson,Peng和Xiao(见[Essen M,Janson S,Peng L,Xiao J.Q space of several real variables,Indiana Univ Math J,2000,49:575-615])引入,是指由R~n中满足的所有可测函数f全体所组成的空间.上式左端在取遍Rn中所有以l(I)为边长且边平行于坐标轴的立方体I的全体中取上确界,而Q_α~(-1)(R~n):=▽·Q_α(R~n).最后证明了解(u,d)在类C([0,T);Q_(α,T)~(-1)(R~n,R~n))∩L_(loc)~∞((0,T);L~∞(R~n,R~n))×C([0,T);Q_α,T(R~n,S~2))∩L_(loc)~∞((0,T);W~(1,∞)(R~n,S~2))(其中0T≤∞)中是唯一的.  相似文献   

15.
假设a,b0并且K_(a,b)(x)=(e~(i|x|~(-b)))/(|x|~(n+a))定义强奇异卷积算子T如下:Tf(x)=(K_(a,b)*f)(x),本文主要考虑了如上定义的算子T在Wiener共合空间W(FL~p,L~q)(R~n)上的有界性.另一方面,设α,β0并且γ(t)=|t|~k或γ(t)=sgn(t)|t|~k.利用振荡积分估计,本文还研究了算子T_(α,β)f(x,y)=p.v∫_(-1)~1f(x-t,y-γ(t))(e~(2πi|t|~(-β)))/(t|t|~α)dt及其推广形式∧_(α,β)f(x,y,z)=∫_(Q~2)f(x-t,y-s,z-t~ks~j)e~(-2πit)~(-β_1_s-β_2)t~(-α_1-1)s~(-α_2-1)dtds在Wiener共合空间W(FL~p,L~q)上的映射性质.本文的结论足以表明,Wiener共合空间是Lebesgue空间的一个很好的替代.  相似文献   

16.
让H(D)表示复平面C里的单位圆盘D上的所有解析函数的全体,ψ_1,ψ_2∈H(D),而φ是D到D的解析自映射.本文刻画了对数Bloch空间上积型算子T_(ψ_1,ψ2,φ)的有界性.  相似文献   

17.
The Ces\aro operator $\mathcal{C}_{\alpha}$ is defined by \begin{equation*} (\mathcal{C}_{\alpha}f)(x) = \int_{0}^{1}t^{-1}f\left( t^{-1}x \right)\alpha (1-t)^{\alpha -1}\,dt~, \end{equation*} where $f$ denotes a function on $\mathbb{R}$. We prove that $\mathcal{C}_{\alpha}$, $\alpha >0$, is a bounded operator in the Hardy space $H^{p}$ for every $0 < p \leqq 1$.  相似文献   

18.
In this paper, weighted estimates with general weights are established for the multilinear singular integral operator defined by TAf(x) = p. v.RnΩ(x- y)|x- y|n+1 A(x)- A(y)- A(y)(x- y) f(y)dy,where Ω is homogeneous of degree zero, has vanishing moment of order one, and belongs to Lipγ(Sn-1) with γ∈(0, 1], A has derivatives of order one in BMO(Rn).  相似文献   

19.
For a finite discrete topological space $X$ with at least two elements, a nonempty set $\Gamma$, and a map $\varphi:\Gamma \to \Gamma$, $\sigma_{\varphi}:X^{\Gamma} \to X^{\Gamma}$with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma})=(x_{\varphi(\alpha)})_{\alpha \in \Gamma}$ (for $(x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma}$) is a generalized shift. In this text for $\mathcal{S} = \{\sigma_{\varphi}:\varphi \in \Gamma^{\Gamma}\}$ and $\mathcal{H}=\{\sigma_{\varphi}:\Gamma \xrightarrow{\varphi} \Gamma$ is bijective$\}$ we study proximal relations of transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$. Regarding proximal relation we prove: $$P(\mathcal{S}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \exists \beta \in \Gamma (x_{\beta} = y_{\beta})\}$$and $P(\mathcal{H}, X^{\Gamma} ) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$ is infinite$\}$ $\cup\{($ $x,x) : x \in \mathcal{X}\}$. Moreover, for infinite $\Gamma$, both transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$ are regionally proximal, i.e., $Q(\mathcal{S}, X^{\Gamma}) = Q(\mathcal{H}, X^{\Gamma} ) = X^{\Gamma} \times X^{\Gamma}$, also for sydetically proximal relation we have $L(\mathcal{H}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\gamma ∈ \Gamma :$ $x_{\gamma} \neq y_{\gamma}\}$ is finite$\}$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号