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Abstract: In this paper, we study the boundedness of the generalized Cesaro operator on
the weighted Dirichlet spaces

Do = {f € H(D); ||f|p. = I£(0) +/ I/ (2)*(1 = [2))*dm(z) < +00}7

where —1 < o < 400 and H(D) is the class of all holomorphic functions on the unit disc D.
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1. Introduction

Let D be the unit disc in the complex plane C, B(a,r) = {z € C;|z — a| < r} be the open
disk centered at a with radius r, and dm(z) = %rdrd@ be the normalized Lebesgue area measure
on D. We denote by H(D) the class of all holomorphic functions on D. For —1 < a < 400 and
0 < p < 400, the weighted Dirichlet spaces D, and the weighted Bergman spaces A2 are defined
respectively by

= ; 2 = 2 "1 = |z])%dm(z 00
Da—{feH(D),llfllpa—If(O)I + [ PR - ) < + }

and

s = {r e HOYIAE, = [ 1EP0- D am) < o).

For each complex v with Rey > —1 and nonnegative integer k, let A} be defined as the kth

coefficient in the expression

1 =

_ v,k

(1 -zt ZA’C‘T ’
k=0
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so that A) = % For f(z) = :O% anz™ € H(D), the generalized Cesaro operator is
defined by
+oo
1
C'(f)(z) = Z (A’Y'H ZAn kak> . (1.1)
n=0 k=0

A direct calculation shows that

1
() _thl/ (¢ wldg (1.2)

This operator was introduced in [1] and was proved to be bounded on the Hardy spaces and the
weighted Bergman spaces in [2] and [3]. For v = 0 we see C° = C, the classical Cesaro operator.
It is well known that the operator C is bounded on the Hardy spaces*~" and on the Bergman

8] as well as on the Dirichlet spaces D, when 0 < o < 119

spaces
We have D, = H? and D, = A?_, respectively whenever a = 1 and a > 1. Recently in
[10], S.Stevi¢ has proved that the generalized Cesaro operator is bounded on D, for « > 1. In
this case the spaces D, are the weighted Bergman spaces A2_,. The purpose of this paper is to
close the gap for the remaining values of the chain of the spaces D,. Our results will extend the
results in [9].
In what follows, C' will stand for positive constants whose value may change from line to

line but not depend on the functions in H(D). The expression A ~ B means C— 'A< B< CA.

2. A weighted composition operator on D,

Let t € [0,1] and
tz
= D.
o) = T 7€

It is clear that for each ¢ € [0, 1], ¢;(2) maps the unit disk into itself. Denote
@t(Z) t

wy(z) = . :1—(1—15)2’ z€D.

Obviously, w(z) is a holomorphic function of z on D. Following [9], for f € H(D), we define

the weighted composition operator

Ti(f)(2) = wi(2)f(2:(2)), t € (0,1].

We will prove that for each ¢t € [0, 1], T} is a bounded operator on D,,. To do this, we need some

auxiliary results contained in the following lemmas.

Lemma 2.1 Iff€D,, 0<a<1,then |f(z)] < ——||f]|p.-

- (-2

Proof Since f(z) fo ¢)d¢, by elementary inequalities we obtain

|z
FE < 1FO)] + / ()l
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for each z € D. On the other hand, by the subharmonicity of |f/(2)|? we get
4
PO < g [ P Pdmw).
(L —120)? JB(z, 15021
For w € B(z, 1;|z|), we have 1 — |z] ~ 1 — |w]| for each z € D. Then
P < s [ (@)1 = [w])*dm(w)
(1 —[z])** Jp(s, 2150z
< e [ @R~ ul)dmw)
(1 —=lz)** Jp
I£11%
Az
So,
! ! 1 £ llp
£OMC < Clllp, | ——rdc < o i
/0 o (1—¢)=" (1—z])®
Thus, we have
<o)+ oA Pe < € ypy
(1—lzh)z = (1—Jz])=
The lemma is proved.
Lemma 2.20'Y For any —1 < A < 400 and any real number 8 > 0, set
_ (1 —[w)*
I)\7B(Z) = O de(m), z€D.
Then )
I ~— 17).
>\7B(2) (1 — |Z|2)ﬁ (|Z| - )
Theorem 2.1 If f € D,, 0 < a < 1, then ||T;(f)||p., < Ct%||f||p, -
Proof For f € D,,
IT:(HIIB, =IT:()(0) +/ [(we(2) f(06(2)))' (1 — |2])*dm(2)
Stzlf(0)|2+2/ [w; (2)?| f(0e(2)) P (1 = |2])*dm(z)+
2 [ @I @) (1 = 2
=t f(0)|* + 211 + 21, (2.1)

We now estimate the integrals I; and I5. A calculation shows that

PR ¢ et 1 11— (1—t)]
= a0 ™M T el S 1o

By Lemma 2.1, we obtain that

Fo) < —<Jiflo..

(1 —lou(2)))2
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Thus, by Lemma 2.2 we get

L :/DIwQ(Z)I [f(0e(2)[*(1 = |z[)*dm(z)

o [ (D
<Clsllp, [ o) g o bzdm(e)
CANEN2 4201 )2 1 iz
=Cl I, 1=t | ()

1

<C||flI5, (1 —t)QW

<Ct*|lf1p,-

For the second integral I, we have
b= [ PGP0 - =)
D
. 2 1- |Z| “ 72 o
= [ (52 ) 1@ P o)) (),

It is easy to see that

-1z \* t2 o
'W@W<r4mw0 SToaoppe =

Hence,
ASWLV%MWWWWO—MMWMW)
=t¢ "2 (1 = [z)%dm(z
Aw¢ﬂ>u 2]} dm(z)

< t*[|f[[3,

since ¢ is univalent on D for each ¢ € [0, 1].
Therefore, (2.1) gives that

17N, < EIFO)* + 20t flIp, + 2t*[|£1ID.,
< 3t°|If 1%, + CtIf 11D,
< Ct|If 15, -

This ends the proof.

3. Main results
Theorem 3.1 The generalized Cesaro operator is bounded on D, for 0 < a < 1.

Proof In the integral (1.2) we choose a path of integration between 0 and z as

tz

Y(t) = 0i(2) = T—(1—02

t €10,1],
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so that 4(0) = 0 and (1) = z. We have

C'(f)(z)=(y+ 1)/0 %Tt(f)(z)(l —t)7dt.

From this we obtain

2

e EIB, =15 + 1+ 17 [ | [ nren - oa] o - epanc)

By the generalized Minkowski inequality and Theorem 2.1, we get that

/D 2
< { [ marera - ane)] - t)R‘ﬂdt}
< ([ 0

<l { [ a-orersal

= CB*(Rey + 1, )||f||pa

2

1
| imrea - q-jeeame)

t

2

where B(-,-) is the usual beta function. This implies

1C (DB, < IFO)2+ |y + 12CBA(Rey + 1,5 11D,
<[fIfp, + Iy + 1PCBA(Rey + 1,5 S,
< Cllfl[p,-

The proof is completed.
Finally, we give a counterexample to illustrate the generalized Cesaro operator is unbounded

on D, for —1 < a < 0. An equivalent norm on D,, in terms of its Taylor coefficients, is

+oo

111D, ~ D _(n+1)!"anl”
n=0
B e
for f(z) =3, "ganz™.
We consider the function f(z) =1 € D,. From (1.1), we easily get

vtL o
Zn—l—’y—Fl

Therefore,
—+o0

’Y+1| 1—
d (4 1) an]? = E 1P n+ 1)1 = +oo.
no( [an| |n+’y+1|2 )
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This means that the generalized Cesaro operator is unbounded on D, for —1 < a < 0.
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