首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.  相似文献   

2.
An InGaN multiple-quantum-well (MQW) violet-light-emitting diode (LED) is grown by low-pressure metalorganic chemical vapour deposition. It is found that photoluminescence wavelength of the InGaN MQW violet LED is lengthened with increasing growth temperature and with the increasing trimethylindium flow of the InGaN wells. The electroluminescence peak wavelength of the violet LED are about 401 nm with full width at half maximum of 14nm, and the output power in injection current of 2OmA at room temperature is 4.1mW.  相似文献   

3.
High-power and high-reliability GaN/InGaN flip-chip light-emitting diodes (FCLEDs) have been demonstrated by employing a flip-chip design, and its fabrication process is developed. FCLED is composed of a LED die and a submount which is integrated with circuits to protect the LED from electrostatic discharge (ESD) damage. The LED die is flip-chip soldered to the submount, and light is extracted through the transparent sapphire substrate instead of an absorbing Ni/Au contact layer as in conventional GaN/InGaN LED epitaxial designs. The optical and electrical characteristics of the FCLED are presented. According to ESD IEC61000-4-2 standard (human body model), the FCLEDs tolerated at least 10\,kV ESD shock have ten times more capacity than conventional GaN/InGaN LEDs. It is shown that the light output from the FCLEDs at forward current 350mA with a forward voltage of 3.3\,V is 144.68\,mW, and 236.59\,mW at 1.0\,A of forward current. With employing an optimized contact scheme the FCLEDs can easily operate up to 1.0\,A without significant power degradation or failure. The life test of FCLEDs is performed at forward current of 200\,mA at room temperature. The degradation of the light output power is no more than 9\% after 1010.75\,h of life test, indicating the excellent reliability. FCLEDs can be used in practice where high power and high reliability are necessary, and allow designs with a reduced number of LEDs.  相似文献   

4.
Porous silicon (PS) light-emitting diode (LED) with an ITO/PS/p-Si/Al structure was fabricated by anodic oxidation method. Photoluminescence (PL) of the PS LED was measured with a peak at 593 nm, and electroluminescence (EL) was measured with a peak at 556 nm under the conditions of 7.5-V forward bias and 210-mA current intensity. The spectral width of EL was measured to be about 160 nm.  相似文献   

5.
Porous silicon (PS) light-emitting diode (LED) with an ITO/PS/p-Si/Al structure was fabricated by anodic oxidation method. Photoluminescence (PL) of the PS LED was measured with a peak at 593 nm, and electroluminescence (EL) was measured with a peak at 556 nm under the conditions of 7.5-V forward bias and 210-mA current intensity. The spectral width of EL was measured to be about 160 nm.  相似文献   

6.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

7.
Polarization-resolved edge-emitting electroluminescence (EL) studies of In GaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.  相似文献   

8.
Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well(MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization and the enhancement of tunneling transport of photo-generated carriers in MQWs, the external quantum efficiency(EQE) of the solar cells increases in a low energy spectral range(λ 370 nm) when the barrier thickness value decreases from 15 nm to 7.5 nm. But the EQE decreases abruptly when the barrier thickness value decreases down to 3.75 nm. The reasons for these experimental results are analyzed. We are aware that the reduction of depletion width in MQW region, caused by the high resistivity of the p-type GaN layer may be the main reason for the abnormally low EQE value at long wavelengths(λ 370 nm).  相似文献   

9.
A patterned Au/Pt/In0.2Ga0.8N/GaN heterostructure Sehottky prototype solar cell is fabricated. The forward current-voltage characteristics indicate that thermionie emission is a dominant current transport mechanism at the Pt/InGaN interface in our fabricated cell. The Sehottky solar cell has an open-circuit voltage of 0.91 V, short-circuit current density of 7mA/cm^2, and fill factor of 0.45 when illuminated by a Xe lamp with a power density of 300 mW/cm^2. It exhibits a higher short-circuit current density of 30 mA/cm^2 and an external quantum efficiency of over 25% when illuminated by a 20-roW-power He-Cd laser.  相似文献   

10.
GaN epilayers were grown on sapphire substrates by metal-organic chemical vapour deposition. Metal-semiconductor-metal photoconductive detectors were fabricated using this material. The photocurrent properties of the detectors were measured and analysed. The spectrum response shows a high sensitivity in the wavelength region from 330 to 360nm, with a peak at 358nm and a sharp cutoff near 360nm. The maximum responsivities at 358nm were 700A/W (2V) and 7000A/W (30V). The relationship between responsivity and bias indicates that the responsivity increases linearly with bias until 30V. The influence of the spacing between two electrodes on the detector responsivity was also studied.  相似文献   

11.
The double heterostructure GaN/InGaN/GaN films with different thicknesses of the InGaN layer were grown at 780℃ or 800℃ by metal-organic chemical vapour deposition.The samples were investigated using x-ray diffraction (XRD),room-temperature photoluminescence (PL) and Raman scattering.The dependences of the samples on both the growth temperature and the thickness of the InGaN layer were studied.The composition of InGaN was determined by the results of XRD,and the bowing parameter of InGaN was calculated in terms of the PL spectra.When the thickness of the InGaN layer was reduced,the phase separation of InGaN was found in some samples.The raman frequency of the A1(LO) and E2(low) modes in all the samples shifted and did not agree with Vegard‘s law.  相似文献   

12.
The effect of Al doping in the GaN layer of InGaN/GaN multiple quantum-well light emitting diodes (LEDs) grown by metalorganic chemical vapour deposition is investigated by using photoluminescence (PL) and highresolution x-ray diffraction. The full width at half maximum of PL of A1 doped LEDs is measured to be about 12nm. The band edge photoluminescence emission intensity is enhanced significantly. In addition, the in-plane compressive strain in the Al-doped LEDs is improved significantly and measured by reciprocal space map. The output power of Al-doped LEDs is 130mW in the case of the induced current of 200mA.  相似文献   

13.
A GaN/Si nanoheterojunction is prepared through growing Ga N nanocrystallites(nc-GaN) on a silicon nanoporous pillar array(Si-NPA) by a chemical vapor deposition(CVD) technique at a relatively low temperature. The average size of nc-Ga N is determined to be ~10 nm. The spectral measurements disclose that the photoluminescence(PL) from GaN/SiNPA is composed of an ultraviolet(UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence(EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of Ga N is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I–V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current(SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage.  相似文献   

14.
The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The threshold current of 0.1 mA for a 10-μm oxide-aperture device is obtained with the threshold current density of 0.127kA/cm^2. For a 22-μm oxide-aperture device, the peak optical output power reaches to 14.6mW at the current injection of 25 mA under the room temperature and pulsed operation with a threshold current of 2mA, which corresponds to the threshold current density of 0.526kA/cm^2. The lasing wavelength is 855.4nm. The full wave at half maximum is 2.2 nm. The analysis of the characteristics and the fabrication of VCSELs are also described.  相似文献   

15.
Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.  相似文献   

16.
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.  相似文献   

17.
BaTiO3(BTO) ferroelectric thin films are prepared by the sol-gel method.The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode(LED) with amorphous BTO ferroelectric thin film are studied.The photoluminescence(PL) of the BTO ferroelectric film is attributed to the structure.The ferroelectric film which annealed at 673 K for 8 h has the better PL property.The peak width is about 30 nm from 580 nm to 610 nm,towards the yellow region.The mixed electroluminescence(EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light.The Commission Internationale De L’Eclairage(CIE) coordinate of EL is(0.2139,0.1627).EL wavelength and intensity depends on the composition,microstructure and thickness of the ferroelectric thin film.The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm.This means the amorphous ferroelectric thin films can output more blue-ray and emission lights.In addition,the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures(200℃-400℃).It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED.This provides a new way to study LEDs.  相似文献   

18.
林家勇  裴艳丽  卓毅  陈梓敏  胡锐钦  蔡广烁  王钢 《中国物理 B》2016,25(11):118506-118506
In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on the n~+-InGaN contact layer by metal organic chemical vapor deposition(MOCVD) using H_2O as an oxidizer at temperatures as low as 400 ℃ without any post-deposition annealing.It shows a high transparency(98%),low resistivity(510 ~4 Ω·cm),and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer.A forward voltage of 2.82 V @ 20 mA was obtained.Most importantly,the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL(LED-Ⅲ),and by28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O_2 as an oxidizer(LED-Ⅱ),respectively.The results indicate that the AZO-TCL grown by MOCVD using H_2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application.  相似文献   

19.
冯倩  李倩  邢韬  王强  张进成  郝跃 《中国物理 B》2012,21(6):67305-067305
We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOSHEMTs) and InAlN/GaN high electron mobility transistors(HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

20.
1.5at% Eu-doped GaN powders were prepared by a co-precipitation method.Powder X-ray diffraction(XRD)results shows that there is only the wurtzite phase.Cathodoluminescence spectra were measured at room temperature and liquid nitrogen temperature,respectively.The band-to-band luminescence of GaN was shifted from 373 nm to 368 nm with the temperature decreasing from room temperature to liquid nitrogen temperature.The luminescence peaks at 537,557,579,590,597,614,653 and 701 nm are attributed to the Eu ions related transitions in the host of GaN powders and the peak positions were not influenced by the variation of temperature.With the increase of accelerating voltage,the intensity of all luminescence peaks was increased.The strongest luminescence peak at 614 nm shows non-symmetrical shape and is composed of 612,615 and 621 nm through Lorentzian fitting,which indicates there are oxygen and nitrogen environments of the Eu3+ions in the Eu-doped GaN powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号