首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ge1Sb2Te4-based chalcogenide random access memory array, with a tungsten heating electrode of 260hm in diameter, is fabricated by 0.18-μm CMOS technology. Electrical performance of the device, as web as physical and electrical properties of GelSb2 Te4 thin film, is characterized. SET and RESET programming currents are 1.6 and 4.1 mA, respectively, when pulse width is 100 ns. Both the values are larger than those of the Ge2Sb2 Tesbased ones with the same structure and contact size. Endurance up to 106 cycles with a resistance ratio of about 100 has been achieved.  相似文献   

2.
We report the experimental results of hybrid four-wave mixing and fluorescence signals from nitrogen-vacancy(NV)centers in diamond. The fluorescence signals are slowed owing to dark state. The observed delay time of light slowing due to interconversion between NV~- and NV~0 is about 6.4 μs. The relative intensities of read-out signals change with the wavelength and power of writing pulse. Based on light slowing, we present the model of all-optical time division multiplexing. The intensity ratio in different demultiplexed channels is modulated by the wavelength and power of control field. It has potential applications in quantum communication and all-optical network.  相似文献   

3.
We report the experimental phenomenon of large resistance change in plasma oxidized TiOx/TiNx film fabricated on W bottom-electrode-contact (W-BEC) array. The W-BEC in diameter 26Ohm is fabricated by a 0.18μm CMOS technology, and the TiOx/TiNx cell array is formed by rf magnetron sputtering and reactive ion etching. In current-voltage (I- V) measurement for current-sweeping mode, large snap-back of voltage is observed, which indicates that the sample changes from high-resistance state (HRS) to low-resistance state (LRS). In the I-V measurement for voltage-sweeping mode, large current collapse is observed, which indicates that the sample changes from LRS to HRS. The current difference between HRS and LRS is about two orders. The threshold current and voltage for the resistance change is about 5.0- 10^-5 A and 2.5 V, respectively. The pulse voltage can also change the resistance and the pulse time is as shorter as 30 ns for the resistance change. These properties of TiOx/TiNx film are comparable to that of conventional phase-change material, which makes it possible for RRAM application.  相似文献   

4.
We propose diamond-like carbon (DLC) as the resistance change material for nonvolatile memory applications. Nanosecale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W//DLC/W structure devices. The deposited DLC film has a thickness of about 20nm and high spa fraction content. Reversible bistable resistive switching from a high resistance state to a low resistance state, and vice versa, is observed under appropriate unipolar stimulation pulses. High resistance switching ratio (larger than a thousand times) and low level of switching power (about 11 μW) are demonstrated. We propose that the mechanism of the repetitive resistive switching is the growth and breakage of conductive sp2-like filaments in the predominantly sp3-type insulating carbon upon applications of voltage pulses, which is consistent with the experimental results.  相似文献   

5.
Cu/MgO/La0.9Sr0.1MnO3 pillars are fabricated on SrTiO3 (001) substrates by the micro-fabrication patterning processes. Their electric transport properties have been measured in the temperature range from the temperature smaller than the Curie one to 300K. At 125K there emerges abrupt breaks of output voltage in voltage-current (Ⅴ-Ⅰ) curves, corresponding to switching in resistance to metastable states, and finally two closed loops are formed with double threshold biases. Around room temperature the Ⅴ-Ⅰ characteristics are non-ohmic and show some gradual hysteresis when sweeping the current in a round-trip scan. A large current-induced resistive change △R/R0, ~-63.2%, is obtained under a current density of 1.0 × 10^4 Acm^-2. Especially, △ R/ R0 depends linearly on the applied current and is independent of the applied magnetic field. The current-induced resistive effect should be of interest for various applications such as switching and field effect devices.  相似文献   

6.
Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10 tilted LaAlO3(001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, open-circuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.  相似文献   

7.
We report the enhancement of the light extraction of InGaN-based green light emitting diodes (LEDs) via the interface nanotexturing. The texture consists of high-density nanocraters on the surface of a sapphire substrate with an in situ etching. The width of nanocraters is about 0.5 μm and the depth is around 0.1 μm. It is demonstrated that the LEDs with interface texture exhibit about a 27% improvement in luminance intensity, compared with standard LEDs. High power InGaN-based green LEDs are obtained by using the interface nanotexture. An optical ray-tracing simulation is performed to investigate the effect of interface nanotexture on light extraction.  相似文献   

8.
Fast light of CsI(Na) crystals   总被引:1,自引:0,他引:1  
The responses of different common alkali halide crystals to alpha-rays and gamma-rays are tested in this research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others do not exhibit this phenomena. The rise time of the fast light is about 5 ns and the decay time is 17±12 ns. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of the host crystal CsI. Self-absorption limits the emission of fast light of CsI(Tl) and NaI(Tl) crystals.  相似文献   

9.
Theoretical analyses are presented on the critically phase-matched second-harmonic generation (SHG) in a biaxial crystal with the focused fundamental Gaussian beams. The dependence of the second-harmonic light power on the phase matching conditions, focused geometries, walk-off effects, and absorptions are discussed in detail. Expressions are presented for calculating the light power of the types I and II SHGs in the biaxial crystal, applied to optimize the blue light generation with the LiB305 crystal. A maximum conversion efficiency of around 37% is obtained with 798-nm laser power of 500 mW.  相似文献   

10.
We demonstrate an efficient and eye-safe wavelength intracavity optical parametric oscillator (OPO), based on a KTP crystal inside a Q-switched Nd:YVO4 laser end pumped by a fiber-coupled diode laser. In the acousto-optic Q-switched operation with the pulse repetition rate of 10 kHz, a 1572-nm eye-safe laser with the average power of 237 mW at the incident pump power of 5.64 W is obtained. Under the pulse repetition rate of 5 kHz, the signal light with pulse width of 2 ns and peak power of 18.5 kW is achieved. The conversion efficiency of the average power is 4.2% from pump diode to OPO signal output and the signal pulse duration is about 13 times shorter than that of the depleted pump light.  相似文献   

11.
The Sb_6Te_4/VO_2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb_6Te_4, Sb_6Te_4/VO_2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb_6Te_4/VO_2 has a broader energy band of 1.58 eV and better data retention(125℃ for 10 y). The crystallization is suppressed by the multilayer interfaces in Sb_6Te_4/VO_2 thin film with a smaller rms surface roughness for Sb_6Te_4/VO_2 than monolayer Sb_4Te_6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb_6Te_4(2 nm)/VO_2(8 nm)thin film. The Sb_6Te_4/VO_2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.  相似文献   

12.
Si16Sbs4-based line cell phase change random access memory (PCRAM), in which the Si16Sbs4 phase change line is contacted by TiN electrodes with a nanoscale gap, is fabricated by electron beam lithography. The lowest current and measured pulse width for RESET operation are 115 μA and 18 ns, respectively. The measured shortest pulse width for recrystallization is 110ns, with applied pulse amplitude of 1.5 V. SET and RESET currents for line cells with different line lengths are determined. Endurance of 106 cycles with a resistance ratio of above 800 has been achieved.  相似文献   

13.
A thin TiO2 layer inserted in a phase change memory (PCM) cell to form a deep sub-micro bottom electrode (DBE) is proposed and its electro-thermal characteristics are investigated with the three-dimensional finite element analysis. Compared with the conventional PCM cell with a SiN stop layer, the reset threshold current of the PCM cell with the TiO2 layer is reduced from 1.8 mA to 1.2 mA and the ratio of the amorphous resistance and crystalline resistive increases from 65 to 100. The optimum thickness of the TiO2 layer and the optimum height of DBE are 10nm and 200nm, respectively. Therefore, the PCM cell with the TiO2 layer can decrease the programming power consumption and increase heating efficiency. The TiO2 film is a better candidate for the SiN film in the PCM cell structure to prepare DBE and to reduce programming power in the reset operation.  相似文献   

14.
This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride(AlPcCl)thin films.To fabricate the sensors,50-nm-thick electrodes with 50-μm gaps between them are deposited on glass substrates.AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation.The resistance of the sensors decreases with increasing thickness and the annealing at 100℃ results in an increase in the initial resistance of sensors up to 24%.The sensing mechanism is based on the change in resistance with temperature.For temperature varying from 25℃ to 80℃,the change in resistance is up to 60%.Simulation is carried out and results obtained coincide with experimental data with an error of±1%.  相似文献   

15.
Graphene's optical absorption coefficient increases linearly with the number of layers making it more effective in the construction of optical tuning graphene-based devices. Refractive index(RI) is one of the important optical parameters of the graphene for accurately describing its optical characteristics and further applications. In view of the RI research of the multilayer graphene is lacking and existing measurement methods are complicated. Optical power tuning RI of multilayer graphene is investigated using a simple measurement and no temperature cross sensitivity all optical fiber sensing structure.Optical power tuning RI characteristics of multilayer graphene are studied by tuning the introducing broad band light power from 0.57 mW to 22.7 m W. Different thickness graphene coating shows different tuning efficiency. At 4.86-μm thickness,a 3.433-nm Bragg wavelength shift is obtained with 156.2-pm/mW wavelength versus optical power tuning sensitivity corresponding to 3.25×10~3 RI change and 0.154 URI/W(URI, unit of RI) RI optical power tuning efficiency.  相似文献   

16.
<正>High-power vertical-cavity surface-emitting lasers(VCSELs) are processed using a wet thermal-selective oxidation technique.The VCSEL chips are packaged by employing three different bonding methods of silver solder,In-Sn solder,and metalized diamond heat spreader.After packaging,optical output power, wavelength shift,and thermal resistance of the devices are measured and compared in an experiment.The device packaged with a metalized diamond heat spreader shows the best operation characteristics among the three methods.The 200-μm-diameter device bonded with a metalized diamond heat spreader produces a continuous wave optical output power of 0.51 W and a corresponding power density of 1.6 kW/cm~2 at room temperature.The thermal resistance is as low as 10 K/W.The accelerated aging test is also carried out at high temperature under constant current mode.The device operates for more than 1000 h at 70℃,and the total degradation is only about 10%.  相似文献   

17.
Using a two-dimensional thermal flow model, we calculate the thermal resistance and the temperature distribution of InGaAsP/InP multi-quantum-well superluminescent diodes. The influence of lateral chip size and composition are evaluated. The results reveal that when the injection power reaches 1 W, temperatures in the active region rises up to almost 5OK. The width and length of the chip also have strong influence on the thermal resistance that can reach two orders of magnitude. The thermal resistance will change from 290 K/W to 68 K/W when the chip width increases from 500μm to 2500μm, and a similar result exists for the length. There is small effect on thermal resistance for active width. In view of the characteristics of output power versus the input current under pulsed and continues currents, the fitted experimental thermal resistance matches well with the measured results.  相似文献   

18.
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-Migned large-area multi-finger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880μm^2) is fabricated with 2μm double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVcEo is 10 V and the collector-base junction breakdown voltage BVcBo is 16 V with collector doping concentration of 1 × 10^17 cm^-3 and thickness of 400nm. The device exhibited a maximum oscillation frequency fmax of 35.5 GHz and a cut-off frequency fT of 24.9 GHz at a dc bias point of Ic = 70 mA and the voltage between collector and emitter is VCE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from OdBm to 21 dBm. A maximum output power of 29.9dBm (about 977mW) is obtained at an input power of 18.SdBm with a gain of 11.47dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, fmax and fT are improved by about 83.9% and 38.3%, respectively.  相似文献   

19.
金冬月  张万荣  陈亮  付强  肖盈  王任卿  赵昕 《中国物理 B》2011,20(6):64401-064401
The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.  相似文献   

20.
We propose a novel method to generate a collimated doughnut-beam (DB) using only one single-cone axicon andrealize it experimentally. The diameter of the DB is estimated by ray optics and is in good agreement with theexperimental results. The CUD image of the DB and the radial light intensity distribution are experimentallyobtained. The light intensity of the DB dark inner region is about 1% of the peak intensity of the DB. Thefar-field divergent angle is about 6mrad and seems to be well-collimated. With optimum values of the power andthe positive detuning of the laser field, the optical dipole potential of the DB can be chosen to be very large as agood confinement for atom trapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号