首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
SiO2半波覆盖层对HfO2/SiO2高反射膜激光损伤的影响   总被引:6,自引:4,他引:2       下载免费PDF全文
研究了SiO2半波覆盖层对HfO2/SiO2高反射膜1064nm激光损伤的影响,分析薄膜的激光损伤特性及图貌得出-对于单脉冲(1-ON-1)激光损伤,SiO2半波覆盖层能提高HfO2/SiO2高反射膜的激光损伤厨值,可显著降低激光损伤程度,减小灾难性损伤发生的概率,可大幅度提高FIfO2/SiO2高反射膜的抗激光损伤能力。  相似文献   

2.
 研究了SiO2半波覆盖层对HfO2/SiO2高反射膜1064nm激光损伤的影响,分析薄膜的激光损伤特性及图貌得出, 对于单脉冲(1-ON-1)激光损伤,SiO2半波覆盖层能提高HfO2/SiO2高反膜的激光损伤阈值;可显著降低激光损伤程度,减小灾难性损伤发生的概率;可大幅度提高HfO2/SiO2高反膜膜的抗激光损伤能力。  相似文献   

3.
HfO_2/SiO_2高反射膜的缺陷及其激光损伤   总被引:1,自引:0,他引:1  
用原子力、Normaski和扫描电子显微镜等分析仪器 ,对高损伤阈值薄膜常采用的 Hf O2 /Si O2 薄膜进行了表面显微图象研究 ,分析了薄膜常见的表面缺陷 ,如节瘤 ,孔洞和划痕等。薄膜表面缺陷的激光损伤实验表明 ,不同缺陷的抗激光损伤能力大不相同 ,节瘤缺陷最低 ,约为 1 5 J/ cm2 ,薄膜的损伤阈值主要由其决定 ,孔洞的激光损伤能力与节瘤相比较高 ,约为节瘤的 2~ 3倍。节瘤缺陷在低能量密度的激光损伤所形成的孔洞 ,与镀制过程中形成的孔洞形貌相似 ,激光再损伤能力也相似。低能量密度的激光把节瘤缺陷变为孔洞缺陷是激光预处理提高薄膜损伤阈值的原因之一  相似文献   

4.
采用单台阶能量光栅扫描以及R-on-1测试两种不同预处理方式研究了激光预处理技术对532nm HfO2/SiO2高反膜的阈值提升效果。用Nd:YAG二倍频激光对电子束蒸发制备的532nm HfO2/SiO2高反膜进行1-on-1损伤阈值测试,然后分别进行单台阶能量光栅扫描以及R-on-1测试。通过对损伤概率以及损伤形貌的分析,发现激光预处理能够去除薄膜内低阈值缺陷,达到提高损伤阈值的目的,损伤阈值分别提高38%和30%。  相似文献   

5.
采用溶胶-凝胶工艺分别制备了SiO2和ZrO2单层薄膜、ZrO2/SiO2双层膜以及ZrO2/SiO2多层高反膜。用输出波长为1064nm、脉宽为6.3ns的YAG激光器对薄膜进行了激光损伤实验。观察了薄膜经强激光辐照后的损伤情况,讨论了薄膜的激光损伤行为,并从理论上分析了产生这些损伤的原因,为进一步镀制高质量的ZrO2/SiO2多层高反膜提供了依据。  相似文献   

6.
HfO_2/SiO_2高反膜、增透膜及偏振膜的1064nm激光损伤特性   总被引:2,自引:0,他引:2  
胡建平  邱服民  马平 《光学技术》2001,27(6):507-508
高反膜、增透膜和偏振膜是Nd∶YAG激光器中的关键薄膜元件 ,其抗激光损伤能力直接影响到激光器的输出能量和功率。由于优异的物理化学性能 ,高功率Nd∶YAG激光器的光学薄膜一般采用HfO2 /SiO2 膜料组合镀制 ,因而用此膜料镀制的光学薄膜的激光损伤特性是薄膜工作者重点关注的问题。对光学中心APS15 0 4镀膜机镀制的HfO2 /SiO2 高反膜、增透膜和偏振膜等开展了 10 64nm的激光损伤实验研究 ,用 2 0 0倍的Normaski显微镜详细分析了高反 ,增透和偏振膜的激光损伤图貌 ,发现对于脉宽为 10ns波长的 10 64nm的激光而言 ,高反膜基本表现为孔洞和等离子体烧蚀疤痕 ,孔洞是由薄膜中的节瘤 (nodular)缺陷的激光损伤引起的 ,损伤的能流密度较低 ,为薄膜的零损伤阈值密度。疤痕为薄膜的激光等离子体烧伤引起的 ,尺寸大小与激光能量密度成近似正比。增透膜一般为双面镀 ,分前后膜堆两种情况 ,前膜堆表现为孔洞和疤痕 ,与高反膜相似 ;后膜堆为孔洞型的小圆麻点聚积 ,麻点处的薄膜完全剥落 ,没有疤痕等烧伤痕迹 ,是激光在基片之间形成的驻波电场损毁 ,损伤阈值比前膜堆低 1 5倍 ,决定着增透膜的损伤阈值。偏振膜的低能量密度损伤与增透膜后膜堆相似 ,表现为孔洞型小麻点聚积 ,损伤处未见疤痕等烧蚀痕迹。对薄膜小尺度损?  相似文献   

7.
采用原子层沉积技术在熔石英和BK7玻璃基片上镀制了TiO2/Al2O3薄膜,沉积温度分别为110℃和280℃。利用X射线粉末衍射仪对膜层微观结构进行了分析研究,并在激光损伤平台上进行了抗激光损伤阈值测量。采用Nomarski微分干涉差显微镜和原子力显微镜对激光损伤后的形貌进行了观察分析。结果表明,采用原子层沉积技术镀制的TiO2/Al2O3增透膜的厚度均匀性较好,Φ50 mm样品的膜层厚度均匀性优于99%;光谱增透效果显著,在1 064 nm处的透过率〉99.8%;在熔石英和BK7基片上,TiO2/Al2O3薄膜在110℃时的激光损伤阈值分别为(6.73±0.47)J/cm2和(6.5±0.46)J/cm2,明显高于在280℃时的损伤阈值。  相似文献   

8.
波长1064nm脉冲激光高阈值反射膜的研制   总被引:1,自引:1,他引:0  
 研究HfO2/SiO2高反射膜的制备工艺及其激光诱导损伤阈值的比较测试,分别采用了反应蒸镀HfO2、反应离子辅助蒸镀HfO2、反应离子辅助蒸镀金属Hf的源材料形成HfO2薄膜。采用这三种工艺制备了HfO2/SiO2高反射膜,在中心波长1064nm处,反射率 R≥99.5%,其中反应蒸镀HfO2/SiO2高反射膜损伤阈值最高,可达60J/cm2(1064nm,5ns)。  相似文献   

9.
采用电子束蒸发法制备了Sc2O3单层薄膜和Sc2O3/SiO2多层反射膜.利用原子力显微镜、X射线衍射仪等方法对薄膜的表面和结构进行,研究.采用355 nm激光研究了Sc2O3/SiO2多层薄膜的损伤特性和预处理效应,并对Sc2O3的损伤原因进行了分析.实验发现,Sc2O3具有较宽的带隙,薄膜结构为立方相,影响Sc2O3/SiO2 多层反射膜抗损伤能力的主要因素足材料的纯度.  相似文献   

10.
为研究金属Al保护、单周期及双周期增强反射膜在5ns脉宽的532nm激光器下的激光损伤阈值(LIDT),采用Comsol软件进行仿真及分析,仿真过程引入SiO2和Ta2O5的拉伸强度(膜层断裂应力)作为阈值条件,得到三种膜系的损伤阈值分别为0.318J/cm^(2)、1.325J/cm^(2)和3.382J/cm^(2),通过搭建实验平台进行激光阈值测试,采用1-on-1模式,选取50%概率的激光损伤点作为损伤阈值,测得激光功率分别为0.288J/cm^(2)、1.232J/cm^(2)及3.152J/cm^(2),与仿真结果较为接近,说明采用拉伸强度分析的该类模型更符合实际损伤,为此类膜系在实际应用中阈值的预测提供了理论基础。  相似文献   

11.
以丙醇锆(ZrPr)为锆源,二乙醇胺(DEA)为络合剂,原位引入聚乙烯吡咯烷酮(PVP),在乙醇体系中成功地合成了PVP掺杂-ZrO2溶胶.采用旋涂法在K9玻璃基片上制备了PVP-ZrO2单层杂化薄膜.用不同掺杂量的PVP-ZrO2高折射率膜层与相同的SiO2低折射率膜层交替沉积四分之一波堆高反射膜.借助小角X射线散射研究胶体微结构,用红外光谱、原子力显微镜、紫外/可见/近红外透射光谱、椭圆偏振仪以及1064nm的强激光辐照实验对薄膜的结构、光学和抗激光损伤性能进行表征.研究发现,体系组成的适当配置可以在溶胶稳定的前提下实现ZrPr的充分水解,赋予薄膜良好的结构、光学和抗激光损伤性能.杂化体系中,DEA与ZrPr之间强的配合作用大大降低了ZrO2颗粒表面羟基的活性,使得PVP大分子只是以微弱的氢键与颗粒的表面羟基作用而均匀分散于ZrO2颗粒的周围,对颗粒的形成和生长无显著影响.因而在实验研究范围内,随PVP含量的增大,PVP-ZrO2杂化膜层的折射率和激光损伤阈值均无显著变化.但是,薄膜中均匀分布的PVP柔性链可以有效促进膜层应力松弛,显著削弱不同膜层之间的应力不匹配程度、大大方便多层光学薄膜的制备.当高折射率膜层中PVP的质量分数达到15%-20%时,膜层之间良好的应力匹配使得多层高反射膜的沉积周期数可达到10以上.沉积1O个周期的多层反射膜,在中心波长1064nm处透射率约为1.6%-2.1%,接近全反射特征,其激光损伤阈值为16.4-18.2J/cm2(脉冲宽度为1ns).  相似文献   

12.
采用大气常压等离子射流技术对溶胶-凝胶SiO2膜表面的油脂污染物进行清洗。利用分光光度计、扫描电子显微镜、红外光谱仪对溶胶-凝胶SiO2膜透过率、表面形貌、化学结构进行表征,并分析清洗前后溶胶-凝胶SiO2膜的激光损伤阈值变化。损伤阈值测试表明,1064nm波长的激光损伤阈值由污染后的16.08J/cm2上升到24.41J/cm2,与污染前24.72J/cm2的损伤阈值相当。同时还获取清洗的最佳时间为10s。清洗前后,溶胶-凝胶SiO2膜保持完好,且未产生新的有机污染物。研究结果表明:大气常压等离子射流技术可对溶胶-凝胶SiO2膜表面的油脂污染物进行有效地清洗,从而提高溶胶-凝胶SiO2膜的透过率和激光损伤阈值,为高功率激光装置的稳定运行提供保障。  相似文献   

13.
以丙醇锆(ZrPr)为锆源,二乙醇胺(DEA)为络合剂,原位引入聚乙烯吡咯烷酮(PVP),在乙醇体系中成功地合成了PVP掺杂-ZrO2溶胶.采用旋涂法在K9玻璃基片上制备了PVP-ZrO2单层杂化薄膜.用不同掺杂量的PVP-ZrO2高折射率膜层与相同的SiO2低折射率膜层交替沉积四分之一波堆高反射膜.借助小角X射线散射研究胶体微结构,用红外光谱、原子力显微镜、紫外/可见/近红外透射光谱、椭圆偏振仪以及1064nm的强激光辐照实验对薄膜的结构、光学和抗激光损伤性能进行表征.研究发现,体系组成的适当配置可以在溶胶稳定的前提下实现ZrPr的充分水解,赋予薄膜良好的结构、光学和抗激光损伤性能.杂化体系中,DEA与ZPr之间强的配合作用大大降低了ZrO2颗粒表面羟基的活性,使得PVP大分子只是以微弱的氢键与颗粒的表面羟基作用而均匀分散于ZrO2颗粒的周围,对颗粒的形成和生长无显著影响.因而在实验研究范围内,随PVP含量的增大,PVP-ZrO2杂化膜层的折射率和激光损伤阈值均无显著变化.但是,薄膜中均匀分布的PVP柔性链可以有效促进膜层应力松弛,显著削弱不同膜层之间的应力不匹配程度、大大方便多层光学薄膜的制备.当高折射率膜层中PVP的质量分数达到15%—20%时,膜层之间良好的应力匹配使得多层高反射膜的沉积周期数可达到10以上.沉积10个周期的多层反射膜,在中心波长1064nm处透射率约为1.6%—2.1%,接近全反射特征,其激光损伤阈值为16.4—18.2J/cm2(脉冲宽度为1ns). 关键词: 溶胶-凝胶 2')" href="#">PVP-ZrO2 高反射膜 激光损伤  相似文献   

14.
激光预处理是提高激光薄膜抗激光损伤阈值的重要手段。对电子束蒸发方式镀制的HfO2/SiO2反射膜采用大口径激光进行了辐照,并采用激光量热计测量了激光辐射前后的弱吸收值。采用聚焦离子束(FIB)技术分析了激光辐照后薄膜的损伤形态并探究了损伤原因,首次采用扫描电镜拍摄到了节瘤部分喷发时的形貌图,并对其进行了FIB分析,为进一步了解节瘤的损伤过程提供了依据。实验发现,激光辐照过后的激光薄膜弱吸收明显降低,激光预处理有效减少了引起薄膜吸收的缺陷,存在明显的清洗效应;在本实验采用的HfO2/SiO2反射膜中,激光预处理技术对于祛除位于基底上种子形成的节瘤是有效的,原因是激光辐射过后该节瘤进行了预喷发并不会对后续激光产生影响;而激光预处理技术对位于膜层中间的可能是镀膜过程中材料飞溅引起的缺陷是无效的,需要通过其他手段对该类节瘤进行祛除。  相似文献   

15.
真空退火对355nm Al2O3/MgF2高反射薄膜性能的影响   总被引:4,自引:2,他引:4       下载免费PDF全文
 采用电子束蒸发沉积技术制备了355nm Al2O3/MgF2 高反射薄膜,并在真空中进行不同温度梯度的退火,用X射线衍射(XRD)观察了薄膜微结构的变化,用355nm Nd:YAG脉冲激光测试了薄膜的激光损伤阈值,用Lambda 900光谱仪测试了薄膜的透过和反射光谱。结果表明在工艺条件相同的条件下真空退火过程对薄膜的性能有很大的影响,退火温度梯度越小的样品,吸收越小,阈值越大,并且是非晶结构。选择合适的真空退火过程可以减少355nm Al2O3/MgF2 高反射膜的膜层吸收,提高薄膜的激光损伤阈值。  相似文献   

16.
以丙醇锆(Zr(OPr)4)为原料,乙酸(HAc)为络合剂,聚乙二醇(PEG200)和聚乙烯吡咯烷酮(PVP)为大分子添加剂,在乙醇体系中成功合成了ZrO2及聚合物掺杂ZrO2溶胶.用旋涂法在K9玻璃基片上制备单层光学增反射膜.借助小角X射线散射和激光动态光散射技术研究胶体的微结构.采用傅里叶变换红外光谱、差示扫描量热分析、X射线衍射分析、原子力显微镜、紫外/可见/近红外透射光谱以及椭偏仪对薄膜的结构和光学性能进行表征.用输出波长为1064 nm的强激光,采用"R/1"模式测试薄膜的抗激光损伤性能.研究发现,改变体系中HAc和H2O的量,可以方便地调节HAc配合反应和H2O分子亲核取代反应发生的概率,从而调控溶胶的稳定性与微结构.在HAc和H2O量配置适当的情况下,原位引入适量的PEG200和PVP可以明显修饰溶胶-凝胶过程,提高溶胶稳定性,促进胶粒之间相互联结成均匀的网络状结构.与溶胶的微结构密切相关,添加PEG200和PVP的薄膜具有更加平整的表面,而膜层均匀的结构及网络状特征赋予薄膜良好的抗激光损伤性能.添加质量分数为10% PEG200和15% PVP的聚合物掺杂ZrO2薄膜,激光损伤阈值可达24.5 J/cm2(脉冲宽度为1 ns);在中心波长λ0处,由反射引起的透射率降低约为2%,显示良好的增反射性能.  相似文献   

17.
对含有不同 Na、W、Mn组分的 Na- W- Mn/ Si O2 系列催化剂进行了付里叶变换激光拉曼光谱测定和研究 ,并参考先前的与之相关催化剂的拉曼光谱 ,对它们的特征拉曼吸收谱带进行了归属。结果表明 :960 ,92 8,81 0 ,789cm-1等吸收峰是 Na- W- Mn/ Si O2 催化剂中 Na-O- W物种的特征吸收谱带 ;62 7,577,51 7,478cm-1等吸收峰是 Na- O- Mn物种的特征吸收谱带 ;Na- O- W分布在距催化剂表面较深的体相中 ;Na- O- Mn主要分布在催化剂的表面  相似文献   

18.
为了能同时满足半导体激光器和YAG激光器对薄膜的特殊要求,在分析高反射膜理论的基础上,选取TiO2和SiO2为高、低折射率材料镀制了周期性多层介质高反射膜。研究了材料的光学及机械特性,重点解决了薄膜的消偏振和抗激光损伤问题。实验采用电子束真空镀膜并加以考夫曼离子源辅助沉积,利用TFC软件进行膜系设计,通过调整镀膜工艺参数和监控方法,在10mm×1.8mm的K9基底上镀制了符合要求的高反射膜,结果表明,当激光以45°入射时,薄膜在900~1100nm的P光与s光的反射率均大于99.95%。所制备的高反射膜性能稳定,抗激光损伤阈值高,能同时满足两种激光器的使用要求。  相似文献   

19.
采用不同的光斑移动距离,对电子束蒸发制备的HfO2/SiO2多层高反膜进行了单步及多步预处理。结果表明:为了使薄膜不产生损伤,预处理最高能量密度最好不超过薄膜零几率损伤阈值的90%; 相同预处理效率下进行的单步预处理对提高光学薄膜抗激光损伤阈值的效果比多步预处理好;对HfO2/SiO2高反膜进行98.4%能量覆盖的两步预处理后薄膜损伤阈值提高81%;控制薄膜的缺陷源,初始物质应采用金属Hf。  相似文献   

20.
采用离子束溅射(IBS)的方式,制备了1064nm高反射Ta2O5/SiO2渐变折射率光学薄膜。对其光学性能和在基频多脉冲下抗损伤性能进行了分析。通过渐变折射率的设计方式,很好地抑制了边带波纹,增加了1064nm反射率。通过对损伤阈值的分析发现,随着脉冲个数的增加,损伤阈值下降明显;但是在20个脉冲数后,损伤阈值(维持在22J/cm2左右)几乎保持不变直到100个脉冲数。通过Leica显微镜对损伤形貌的观察,发现损伤诱因是薄膜表面的节瘤缺陷。通过扫描电镜(SEM)以及聚集离子束(FIB)对薄膜表面以及断面的观察,证实了薄膜的损伤起源于薄膜表面的节瘤缺陷。进一步研究得出,渐变折射率薄膜在基频光单脉冲下损伤主要是由初始节瘤缺陷引起的,在后续多脉冲激光辐照下初始节瘤缺陷引起烧蚀坑的面积扩大扫过薄膜上的其他节瘤缺陷,引起了其他节瘤缺陷的喷射使损伤加剧,造成损伤的"累积效应"。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号