首页 | 本学科首页   官方微博 | 高级检索  
     检索      

HfO_2/SiO_2薄膜的激光预处理作用研究北大核心CSCD
引用本文:卫耀伟,张哲,刘浩,欧阳升,郑轶,唐耿宇,陈松林,马平.HfO_2/SiO_2薄膜的激光预处理作用研究北大核心CSCD[J].强激光与粒子束,2013,25(12):3338-3342.
作者姓名:卫耀伟  张哲  刘浩  欧阳升  郑轶  唐耿宇  陈松林  马平
作者单位:1.成都精密光学工程研究中心, 成都 61 0041
摘    要:激光预处理是提高激光薄膜抗激光损伤阈值的重要手段。对电子束蒸发方式镀制的HfO2/SiO2反射膜采用大口径激光进行了辐照,并采用激光量热计测量了激光辐射前后的弱吸收值。采用聚焦离子束(FIB)技术分析了激光辐照后薄膜的损伤形态并探究了损伤原因,首次采用扫描电镜拍摄到了节瘤部分喷发时的形貌图,并对其进行了FIB分析,为进一步了解节瘤的损伤过程提供了依据。实验发现,激光辐照过后的激光薄膜弱吸收明显降低,激光预处理有效减少了引起薄膜吸收的缺陷,存在明显的清洗效应;在本实验采用的HfO2/SiO2反射膜中,激光预处理技术对于祛除位于基底上种子形成的节瘤是有效的,原因是激光辐射过后该节瘤进行了预喷发并不会对后续激光产生影响;而激光预处理技术对位于膜层中间的可能是镀膜过程中材料飞溅引起的缺陷是无效的,需要通过其他手段对该类节瘤进行祛除。

关 键 词:薄膜  激光预处理  多层高反膜  激光损伤阈值  节瘤
收稿时间:2013-07-22

Laser conditioning effect on HfO2/SiO2 film
Institution:1.Chengdu Fine Optical Engineering Research Center,Chengdu 610041,China
Abstract:Laser conditioning is one of the important methods to improve the laser damage threshold of film optics. Firstly, a large aperture laser was used to irradiate the HfO2/SiO2 reflectors, which were evaporated from hafnia and silica by e-beam. Secondly, a laser calorimeter was used to test the film absorption before and after laser irradiation. Focused ion beam (FIB) was few reported using on laser film, it was used to study the damage morphology and explore the cause of damage. The shooting of the partial ejection on nodule was obtained for the first time, which provided the basis for study the damage process. The results show that film absorption was decreased obviously after the laser irradiation, laser conditioning can raise the laser damage threshold by the cleaning mechanism. For the HfO2/SiO2 reflectors, laser conditioning was effective to eject the nodules on substrate. It resulted from the nodule residue not to affect the subsequent laser. In addition, laser conditioning was not effective to the nodule in the film, which might be from the material spatter in coating process. In this case, other method could be used to get rid of the nodules.
Keywords:
本文献已被 维普 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号