首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
研究了响应波长在15μm附近的超长波GaAs/AlGaAs量子阱红外探测器在不同外加偏压下的光电流谱特性.光电流谱上的两个主要由于阱宽随机涨落而呈现为高斯线形的响应峰被分别指认为量子阱基态E0到第一激发态E1和第三激发态E3的跃迁.跃迁峰随着器件上外加偏压的增大而出现线性红移现象,认为这种变化起源于激发态与基态对量子阱结构中势变化敏感性的不同,采用传输矩阵方法并考虑到电子交互作用修正进行的理论计算在定量上解释了实验结果. 关键词: 量子阱红外探测器 超长波 光电流 传输矩阵  相似文献   

2.
两端叠层结构的中长波量子阱红外探测器   总被引:1,自引:0,他引:1       下载免费PDF全文
霍永恒  马文全  张艳华  黄建亮  卫炀  崔凯  陈良惠 《物理学报》2011,60(9):98401-098401
采用分子束外延技术生长了两个叠层结构的双色量子阱红外探测器结构,并经过光刻和湿法刻蚀制作成两端结构的量子阱红外探测器单元器件. 通过改变量子阱势垒高度,势阱宽度,掺杂浓度,重复周期数等器件参数,可以使总电压在两个叠层之间产生适当的分布,从而使器件表现出不同的电压响应特点. 光电流谱测量显示,器件1随着外加偏置电压可实现对于中波大气红外窗口(3—5 μm)和长波大气红外窗口(8—12 μm)红外响应的切换,器件2在不同的偏置电压下可以对这两个波段同时做出响应. 本文探讨了两端叠层结构量子阱红外探测器的工作原 关键词: 电压调制 同时响应 量子阱红外探测器 双波段  相似文献   

3.
周旭昌  陈效双  甄红楼  陆卫 《物理学报》2006,55(8):4247-4252
通过对p型量子阱红外探测器(QWIP)的自洽计算,得到了量子阱价带的电子结构和器件的光电流谱,并研究了载流子在动量空间分布对p型QWIP光谱响应的影响.计算结果表明,在动量空间不同区域的空穴对器件的光谱响应起着不同作用,从而使得在p型QWIP中,空穴浓度和温度都将影响器件的响应光谱.所得结果合理地解释了实验中器件响应光谱随掺杂浓度和温度的变化. 关键词: p型量子阱红外探测器 响应光谱 空穴浓度 温度  相似文献   

4.
以单轴应力作用下超晶格量子阱应变能带理论为基础,采用电子反射与干涉方法,研究了单轴应力对超晶格能带的影响,推导了单轴应力与超晶格导带子能级的定量关系。以GaAs-AlGaAs-GaAs为例,具体计算了导带中子能级对应力的依赖关系,进而给出了单轴应力对n型AlGaAs-GaAs量子阱红外探测器(QWIP)吸收波长的影响。计算结果表明,随着单轴压应力的增大,量子阱红外探测器的吸收波长表现出较明显的变化。当单轴压力增大到1.3GPa,量子阱红外探测器的吸收峰值移动了将近1.1μm,并且基本与应力呈线性关系。量子阱红外探测器吸收波长连续可调范围5.57~4.46μm。  相似文献   

5.
基于载流子在量子结构中的输运理论研究了甚长波量子阱红外探测器(峰值响应波长15μm,量子阱个数大于40)的载流子的输运性质.研究结果表明,在甚长波量子阱红外探测器中,电流密度一般很低,暗电流主要来源于能量高于势垒边的热激发电子.通过薛定谔方程和泊松方程以及电流的连续性方程的自洽求解,发现外加偏压下电子浓度在甚长波器件各量子阱的分布发生较大变化,电场在整个器件结构上呈非均匀分布,靠近发射极层的势垒承担的电压远远高于均匀分布的情形.平带模型假定电压在器件体系上均匀分布,导致小偏压下的理论计算值远远低于实验值. 关键词: 甚长波量子阱红外探测器 量子波输运 暗电流  相似文献   

6.
用分子束外延生长了GaAs/AlGaAs双量子阱激光器结构样品,并对不同温度快速热退火导致量子阱组分无序即阱和垒中三族元素的扩散过程进行了实验和理论研究.用光荧光技术测量退火样品的n=1量子阱能级跃迁峰值位置,结果表明退火前后样品量子阱能级位置发生蓝移,蓝移量随温度的提高而增大.对退火过程中GaAs/AlGaAs量子阱中三族元素的扩散过程进行了理论分析,并与实验结果相比较,获得了不同退火温度下铝原子的扩散系数和扩散过程的激活能.950℃,30s退火条件下,铝原子的扩散系数为6.6×10-16相似文献   

7.
10—14 μm同时响应的双色量子阱红外探测器   总被引:1,自引:0,他引:1       下载免费PDF全文
实现截止波长为11.8和14.5 μm双色同时响应的量子阱红外探测器,可以同时工作在8—12 μm大气窗口和甚长波波段.在77 K下测量到很强的光电流谱.器件结构采取了较为简洁的设计,通过适当增大量子阱结构中势阱的宽度和选择合适的掺杂浓度,在同一偏压下实现了对两个波长的同时响应.两个光响应峰分别为基态到第五激发态和基态到第一激发态的跃迁吸收. 关键词: 量子阱红外探测器 双色 同时响应  相似文献   

8.
徐天宁  李家辉  张磊  吴惠桢 《光学学报》2008,28(8):1565-1570
PbTe/CdTe量子阱是一类新型异系低维结构材料,实验观察到具有强的室温中红外光致发光现象.建立了理论模型,计算了PbTe/CdTe量子阱的自发辐射率和光学增益.模型中量子阱分立能级的计算采用k·p包络波函数方法和有限深势阱近似,考虑了PbTe能带结构的各项异性和阱层中应变对能级的影响.计算了PbTe/CdTe量子阱自发辐射谱与带间弛豫和注入载流子浓度间的依赖关系,计算结果与实验观察到的光致发光峰相符合.自发辐射谱线峰位随着注入载流子浓度的增加而出现蓝移,当载流子浓度从2×1017cm-3增加到2.8×1018cm-3,基态发射峰从372 meV蓝移到397 meV,而第一激发态发射峰蓝移量为15 meV.上述蓝移现象是由载流子与载流子及载流子与声子间的相互作用引起的.与PbTe体材料相比.PbTe/CdTe量子阱结构具有更高的增益强度(提高近15倍)和更宽的增益区,因而该体系可能是实现室温连续工作的中红外激光器的理想材料.  相似文献   

9.
量子阱红外探测器是一种新型红外探测器.它是利用新型半导体超晶格量子阱材料的子能带光跃迁的红外吸收特性制成的.它具有响应快、灵敏度高、可变波长、可变带宽等特点,并有实现大面积集成和制作大面积二维象素列阵的实际可能性,将成为新一代红外探测器件,在未来五到十年内可能引起红外物理、红外光电子学及其应用领域的变革.两年前,美国贝尔实验室已研制出可与历史悠久的HgCdTe红外探测器性能相比较的GaAs/AlGaAs量子阱探测器. 中国科学院物理研究所从1989年开始,就在器件材料生长、器件物理、器件工艺及器件的性能测试等方面,着手进行…  相似文献   

10.
刘柱  赵志飞  郭浩民  王玉琦 《物理学报》2012,61(21):413-419
采用八能带K-P理论以及有限差分方法,研究了沿[001]方向生长的InAs/GaSb二类断带量子阱体系的能带结构、波函数分布和对[110]方向线性偏振光的吸收特性.研究发现,通过改变InAs或GaSb层的厚度,可有效调节该量子阱体系的能带结构及波函数分布.计算结果表明,当InAs/GaSb量子阱的导带底与价带顶处于共振状态时,导带基态与轻空穴基态杂化效应很小,且导带基态与第一激发态的波函数存在较大的重叠,导带基态与第一激发态之间在布里渊区中心处的跃迁概率明显大于导带底与价带顶处于非共振状态时的跃迁概率.研究结果对基于InAs/GaSb二类断带量子阱体系的中远红外波段的新型级联激光器、探测器等光电器件的设计具有重要意义.  相似文献   

11.
量子阱红外探测器(QWIP)是一种对红外辐射信息进行高灵敏度感应的光电转换器件,温度是影响其性能的一个参数.文章以超晶格量子阱发射与干涉电子态理论和吸收波长公式为依据,通过计算温度对势阱、势垒宽度和势垒高度的影响,得出量子阱红外探测器峰值波长与温度的变化关系.发现:当温度升高时,探测峰值发生改变,其中有两处峰值发生红移,一处发生蓝移.这对精确分析红外辐射携带信息和制作非制冷量子阱红外探测器提供了理论指导.  相似文献   

12.
吕惠宾 《物理》1992,21(10):635-636
红外量子阱探测器是利用量子阱材料导带内子带间光跃迁对红外辐射的强吸收,来测量红外辐射强度的一种新型的、快速灵敏的红外探测器.其工作原理是:首先利用掺杂使量子阱中的基态上填充上具有一定浓度的二维电子,当入射光子能量■等于子带间能隙时。照射到器件接收面上的红外辐射将处于基态上的电子激发到较高激发态上,这些激发热电子在外场作用下,在匹配的外电路中形成与入射光强度成正比的电流或电压信号.该探测器的响应波段可以覆盖8—14μm的波长范围,响应速度快(皮秒量级),灵敏度较高(D*~1010cmHz1/2/W),并且可以通过改变材料的生长…  相似文献   

13.
熊大元  李志锋  陈效双  李宁  甄红楼  陆卫 《物理学报》2007,56(11):6648-6653
针对实验中9.5μm峰值响应波长的n型长波量子阱红外探测器设计运用二维金属小球(铜)阵列作光耦合结构.金属小球阵列均匀填充在绝缘的胶黏剂中,基于惠更斯原理研究二维金属小球阵列体系的光耦合和光吸收,结果表明对9.5μm响应波长的长波量子阱红外探测器,采用周期为3μm,半径为0.9μm左右的金属小球阵列可以获得最佳的光耦合.优化设计后的量子效率(66%)远高于45°磨角耦合的量子效率(38%),为实验运用金属小球阵列进行长波量子阱红外探测器的光耦合提供了基本的理论依据和详细的优化设计方案.  相似文献   

14.
本文报道了对分子束外延(MBE)生长的In0.25Ga0.75As-GaAs应变层量子阱结构在77K下的压力光荧光(PL)研究的结果。流体静压力从0到50kbar.,给出了In0.25Ga0.75As-GaAs应变层量子阱的Γ谷压力系数,实验观察到了量子阱中能级与势垒GaAs中X谷的能级交叉。通过对其压力行为的分析,给出了In0.25Ga0.75As-GaAs异质结的导带与价带跃变比:Qc=△Ec:△Ev=0.68:0.32。对(InGa)As-GaAs应变量子阱常压下的理论分析与实验符合很好。本文也对Al0.3Ga0.70As-GaAs量子阱进行了讨论。 关键词:  相似文献   

15.
为了降低噪声对InAs/GaSb量子阱作为双色电探测器性能的影响,设计性能优良的光电探测器,在InAs/GaSb量子阱中加入AlSb夹层,以减少电子和空穴在界面处的复合,从而抑制由于电子和空穴复合引起的噪声。首先应用转移矩阵方法求解薛定谔方程得到量子阱中电子和空穴的能级和波函数,研究AlSb夹层对电子和空穴波函数的影响。应用平衡方程方法求解外加光场条件下的玻尔兹曼方程,研究所有电子和空穴跃迁通道对光吸收系数的贡献,重点研究了AlSb夹层厚度对光吸收系数的影响。结果表明:基于In As/GaSb的量子阱体系可以实现双色光吸收,加入AlSb夹层可以有效抑制电子和空穴在界面处的隧穿,从而降低复合噪声,同时AlSb夹层的加入也对吸收峰有影响。AlSb夹层的厚度达到2 nm即可有效降低电子和空穴复合噪声,双色光吸收峰在中远红外波段,为该量子阱作为性能良好的中远红外光电探测器提供理论支撑。  相似文献   

16.
朱育清  杨沁清 《光子学报》1997,26(5):408-412
本文采用传输矩阵的方法计算了GexSi1-x/Si量子阱红外探测器结构参量对多量子阱波导结构模场分布,光场限制因子和有效吸收系数的影响,并给出了优化设计的结果.  相似文献   

17.
李先皇  陆昉  孙恒慧 《物理学报》1993,42(7):1153-1159
应变的GexSi1-x层和未应变的硅层间的能带偏移主要是价带偏移。量子阱中载流子的热发射能与界面的能带偏移有着密切的关系。本文用深能级瞬态谱(DLTS)研究分子束外延生长的p型Si/Ge0.25Si0.75/Si单量子阱的价带偏移,阱宽为15nm,考虑到电场的影响和量子阱中第一子能级的位置,对从DLTS得到的热发射能进行适当的修正,可以计算出Si/Ge0.25Si0.75/S 关键词:  相似文献   

18.
用光伏谱方法研究InGaAs/GaAs应变量子阱的性质   总被引:2,自引:0,他引:2       下载免费PDF全文
吴正云  王小军  余辛  黄启圣 《物理学报》1997,46(7):1395-1399
采用低温光伏谱方法,研究了应变In0.18Ga0.82/GaAs单量子阱结构中各子能级之间的光跃迁,并与理论计算的结果进行比较,对光伏谱的谱峰跃迁能量随温度变化的分析,表明量子阱中的应变与温度基本无关.研究了光伏谱的谱峰半高宽度随温度的变化关系.讨论了声子关联、混晶组分起伏及生长界面不平整对光伏谱谱峰宽度的影响 关键词:  相似文献   

19.
采用分子束外延技术在(001)取向的InP衬底上外延生长了亚稳态的ZnxCd1-xSe/MgSe低维量子阱结构,并通过光致发光和子带吸收方法,分析其能带结构。在单量子阱样品制备过程中,高能电子衍射强度振荡表明MgSe可以实现二维生长模式,衍射图样证明其为亚稳态闪锌矿结构。通过引入厚的ZnxCd1-xSe空间层,抑制了MgSe垒层的相变,并能进一步提高样品的结晶质量,得到高结晶质量的多量子阱结构。通过计算不同阱宽的能带与光致发光实验比较,证明了ZnxCd1-xSe/MgSe的导带带阶为1.2 eV,价带带阶为0.27 eV。为了进一步验证其能带结构,制备了电子掺杂的ZnxCd1-xSe/MgSe的多量子阱,观测到半高宽很窄的中红外吸收。利用发光谱确定的带阶计算了量子阱中子带的吸收波长,和实验结果非常吻合。设计了一种双量子阱结构,计算结果显示,通过利用量子阱中的耦合效应,可以实现1.55μm光通信波段的吸收。  相似文献   

20.
p型GexSi1-x/Si多量子阱的红外吸收及其分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过测量GeSi多量子阱的红外谱,同时观察到了相应于量子阱内重空穴基态HH1到重空穴激发态HH1、轻空穴激发态LH1和自旋分裂带SO及连续态间的跃迁吸收.测量了GeSi多量子阱探测器的正入射光电流谱,看到了明显的光响应峰.理论计算中计及了轻、重和自旋分裂带间的耦合及能带的非抛物性,并自洽考虑了哈特里势和交换相关势.与实验结果比较,认为带之间的耦合,使子带间的跃迁情况变得复杂,是正入射吸收产生的原因 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号