首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Using a technique applied previously to vibrationally excited molecular nitrogen (N2^*) in the region of daytime and nighttime aurora,the emission intensity of the N2 second positive band system in an inductively coupled plasma (ICP) has been analysed and the vibrational temperature of nitrogen molecules in the ICP is thus determined.The result shows that the vibrational temperature increases with the increase of the neutral gas pressure from 0.04Pa to 10Pa,then decreases with the further increase of the pressure from 10Pa to 100Pa.Also,this is explained by using the Boltzmann relation between the vibrational temperature and the concentration of the vibrationally excited N2^*(X^1Σg^ ) molecules.  相似文献   

2.
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two metastable states (N 2(A3∑u+), N2 (a1 ∑u-)) are taken into account. The model includes the particle continuity equation, the electron energy balance equation, and Poisson抯equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decreases.  相似文献   

3.
An atmospheric pressure plasma jet generated with Ar with H2O vapor is characterized and applied to inactivation of Bacillus subtilis spores. The emission spectra obtained from Ar/H2O plasma shows a higher intensity of OH radicals compared to pure argon at a specified H2O concentration. The gas temperature is estimated by comparing the simulated spectra of the OH band with experimental spectra. The excitation electron temperature is determined from the Boltzmann’s plots and Stark broadening of the hydrogen Balmer Hβline is applied to measure the electron density. The gas temperature, excitation electron temperature, and electron density of the plasma jet decrease with the increase of water vapor concentration at a fixed input voltage. The bacteria inactivation rate increases with the increase of OH generation reaching a maximum reduction at 2.6%(v/v) water vapor. Our results also show that the OH radicals generated by the Ar/H2O plasma jet only makes a limited contribution to spore inactivation and the shape change of the spores before and after plasma irradiation is discussed.  相似文献   

4.
宋慧敏  贾敏  金迪  崔巍  吴云 《中国物理 B》2016,25(3):35204-035204
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been investigated experimentally. As the pressure increases, the shapes of charge–voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa,the electron temperature is estimated to be 4.139 e V, the electron density and the vibrational temperature of plasma are peak4.71×10~(11)cm~(-3) and 1.27 e V, respectively. The ratio of spectral lines I391.4/peak I380.5which describes the electron temperature hardly changes when the pressure varies between 5000–30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spectrum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin–pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.  相似文献   

5.
By using optical emission spectroscopy (OES), N2 and N2^+ vibrational temperatures in capacitively coupled plasma discharges with different exciting frequencies are investigated. The vibrational temperatures are acquired by comparing the measured and calculated spectra of selected transitions with a least-square procedure. It is found that N2 and N2^+ vibrational temperatures almost increase linearly with increasing exciting frequency up to 23 MHz, then increase slowly or even decrease. The pressure corresponding to the maximum point of N2 vibrational temperature decreases with the increasing exciting frequency. These experimental phenomena are attributed to the increasing electron density, whereas the electron temperature decreases with exciting frequency rising.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 tort, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.  相似文献   

7.
Measurements of dust plasma parameters were carried out in the discharges of (SiH4/C2H4/Ar) mixtures. Dust particles were formed in the capacitively coupled radio-frequency discharge of these reactive mixtures in a cylindrical chamber. Langmuir probe was employed for diagnosing and measuring the important plasma parameters such as electron density and electron temperature. The results showed that the electron density dropped, and in contrast the electron temperature rose when the dust particles formed. The curves of the electron density and temperature versus the RF power and pressure were presented and analysed. Further, it was found that the wriations of electron temperature and the size of dust void with the RF power followed the similar trends. These trends might be useful for understanding more about the characteristics of dusty voids.  相似文献   

8.
Diagnosis of methane plasma, generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source, is conducted by optical emission spectroscopy (OES). The reactive radicals in methane plasma such as CH, C2, and Ha are detected insitu by OES. The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra. In addition, the density of CH radical, which is considered as one of the precursors in diamond-like (DLC) film formation, affected by the parameters of input voltage and the feed gas flow rate, is emphasized. With the Boltzmann plots, four Ar atomic spectral lines (located at 675.28nm, 687.13nm, 738.40nm and 794.82nm, respectively) are chosen to calculate the electron temperature, and the dependence of electron temperature on discharge parameters is also investigated.  相似文献   

9.
马杰  蒲以康 《中国物理快报》2003,20(9):1527-1529
By using a Langmuir probe, the electron energy distribution function (EEDF) is measured in inductively coupled plasma discharges in N2/Ar mixtures at 200W rf powers. In pure N2 discharges a Maxwellian EEDF is observed.When the mixing ratio of Ar increases, the distribution of high-energy electrons evolves with a different trend from that of low-energy electrons, resulting in an apparent “two temperature structure” of the EEDF. We discuss this non-Maxwellian EEDF and its effect on the measurement and the interpretation of “electron temperature”by both the probe and line ratio technique.  相似文献   

10.
In this paper,we explore diamond synthesis with a series of experiments using an Fe-Ni catalyst and a P3N5 additive in the temperature range of 1250-1550 ℃ and the pressure range of 5.0-6.3 GPa.We also investigate the influence of nitrogen on diamond crystallization.Our results show that the synthesis conditions(temperature and pressure) increase with the amount of P3N5 additive increasing.The nitrogen impurity can significantly influence the diamond morphology.The diamonds stably grow into strip and lamellar shapes in the nitrogen-rich environment.The Fourier-transform infrared spectrum shows that the nitrogen concentration increases rapidly with the content of P3N5 additive increasing.By spectrum analysis,we find that with the increase of the nitrogen concentration,the Ib-type nitrogen atoms can aggregate in the A-centre form.The highest A-centre nitrogen concentration is approximately 840 ppm.  相似文献   

11.
王一男  刘悦  郑殊  林国强 《中国物理 B》2012,21(7):75202-075202
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, the spices such as electron, N2+, N4+, Ar+, and two metastable states (N2 (A3u+), N2 (a1u-)) are taken into account. The model includes particle's continuity equations, electron's energy balance equation, and Poisson equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decrease.  相似文献   

12.
The effects of working pressure on the composition, structure and surface morphology properties of CuInSe2 (CIS) films selenized with a plasma-assisted selenization process is investigated. Higher selenium content, better crystalline quality and much more regular surface particles compared to the others are found in the CIS film with 40 Pa working pressure. A Cu(In,Ga)Se2 device fabricated with the optimized plasma-assisted selenization process is demonstrated to be better than our previous result. After discussion, the reason for these phenomena is attributed to the compromise of electron temperature and plasma density.  相似文献   

13.
赵璐璐  刘悦 《中国物理 B》2017,26(12):125201-125201
A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established.Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr(1 Torr = 1.33322×10~2 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase;the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.  相似文献   

14.
场致发射限制超导射频腔加速梯度增长。为了减少超导射频腔场致发射,在室温条件下,设计搭建了1.3GHz单cell超导射频腔等离子体清洗实验装置,开展等离子体清洗放电研究。使用CST软件模拟腔中的电磁场分布并且优化外部品质因数得到合适的放电条件。随着压强、前向功率和含氧量的变化,实验探讨了Ar/Ar-O2放电的物理特征和电子激发温度的变化趋势。残余气体分析结果表明,Ar/O2等离子体清洗能够消除腔体内表面的碳化物。Field emission limits the accelerating gradient increase in SRF cavities. In order to reduce field emission of SRF cavities, the plasma processing experimental setup of a 1.3 GHz single-cell SRF cavity is designed and built to carry out plasma processing discharge research at room temperature. The electromagnetic field distribution is simulated and the external quality factor is optimized to provide a suitable discharge condition using CST software. It is explored that the physical property of Ar/Ar-O2 discharge and the variation trend of electron excitation temperature with the changes of pressure, forward power and O2 content in experiment. The result of residual gas analysis indicates that Ar/O2 plasma processing can eliminate the carbide of the inner surface of cavity.  相似文献   

15.
Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with lOOns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 × 10^-21 Vm^2) of E/N is enough to sustain an electron density of 10^19 m^-3 in 1 arm 1500K Ar+0.1% K mixture, with a very small power input of about 0.08 × 10^4 W/m^3.  相似文献   

16.
An infinite-volume of atmospheric argon microwave plasma is produced in the microwave plasma source based on the inductive coupling window-rectangular resonator under the input of the microwave power at 2.45 GHz. The excitation temperature of the plasma is studied by using the Boltzmann plot of Ar I lines in two different wavelength ranges while the electron temperature is researched by using line-to-continuum intensity ratio of Ar I lines. The electron density is compared by using the Stark broadenings of At I lines at 522.13nm and 549.59nm and Ha line at 486.13nm.  相似文献   

17.
《中国物理 B》2021,30(9):95205-095205
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber, for neutral beam injection system in CFETR. In this model, the electron effective collision frequency and the ion mobility at high E-fields are employed, for accurate simulation of discharges at low pressures(0.3 Pa–2 Pa) and high powers(40 k W–100 k W). The results indicate that when the high E-field ion mobility is taken into account, the electron density is about four times higher than the value in the low E-field case. In addition, the influences of the magnetic field, pressure and power on the electron density and electron temperature are demonstrated. It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances. However, the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not. Besides, the maximum of the electron density first increases and then decreases with magnetic field, while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant. As the pressure increases from 0.3 Pa to 2 Pa, the electron density becomes higher, with the maximum moving upwards to the driver region, and the symmetry of the electron temperature in the xz-plane becomes much better. As power increases, the electron density rises, whereas the spatial distribution is similar. It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters, while the power only has little effect.  相似文献   

18.
In this paper intrinsic microcrystalline silicon films have been prepared by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) with different substrate temperature and pressure. The film properties were investigated by using Raman spectra, x-ray diffraction, scanning electron microscope (SEM), and optical transmittance measurements, as well as dark conductivity. Raman results indicate that increase of substrate temperature improves the microcrystallinity of the film. The crystallinity is improved when the pressure increases from 50Pa to 80Pa and the structure transits from microcrystalline to amorphous silicon for pressure higher than 80Pa. SEM reveals the effect of substrate temperature and pressure on surface morphology.  相似文献   

19.
Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32 (1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature Te varies in the range 8000*20000K at atmospheric pressure.  相似文献   

20.
Observationof two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasma are discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL ≤ Te/Ti ≤ 2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号