首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   6篇
物理学   8篇
  2023年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals.  相似文献   
2.
In this paper,we explore diamond synthesis with a series of experiments using an Fe-Ni catalyst and a P3N5 additive in the temperature range of 1250-1550 ℃ and the pressure range of 5.0-6.3 GPa.We also investigate the influence of nitrogen on diamond crystallization.Our results show that the synthesis conditions(temperature and pressure) increase with the amount of P3N5 additive increasing.The nitrogen impurity can significantly influence the diamond morphology.The diamonds stably grow into strip and lamellar shapes in the nitrogen-rich environment.The Fourier-transform infrared spectrum shows that the nitrogen concentration increases rapidly with the content of P3N5 additive increasing.By spectrum analysis,we find that with the increase of the nitrogen concentration,the Ib-type nitrogen atoms can aggregate in the A-centre form.The highest A-centre nitrogen concentration is approximately 840 ppm.  相似文献   
3.
In this paper, the diamond epitaxial growth mechanism has been studied in detail by employing several types of diamond as a seed in a catalyst-graphite system under high pressure and high temperature (HPHT) conditions. We find that the diamond nucleation, growth rate, crystal orientation, and morphology are significantly influenced by the original seeds. The smooth surfaces of seeds are beneficial for the fabrication of high-quality diamond. Our results reveal that the diamond morphology is mainly determined by the original shape of seeds in the early growth stage, but it has an adjustment process during the growth and leads to well symmetry. Additionally, we have also established the growth model for the twinned diamond grown on several seeds, and proposed the possible growth processes by tracking the particular shapes of seeds before and after treatment under HPHT conditions. These results suggest that the shape-controlled synthesis of diamond with well morphology can be realized by employing certain suitable diamond seeds. This work is expected to play an important role in the preparation of trustworthy diamond-based electronic and photonic devices.  相似文献   
4.
We report a new diamond synthesis process in which cubic boron nitride single crystals are used as seeds, FesoNi20 alloy powder is used as catalyst/solvent and natural flake-like graphite is used as the carbon source. The samples are investigated using laser Raman spectra and x-ray diffraction (XRD). Morphology of the sample is observed by a scanning electron microscope (SEM). Based on the measurement results, we conclude that diamond single crystals have grown on the cBN crystal seeds under the conditions of high temperature 1230℃ and high pressure 4.8 GPa. This work provides an original method for synthesis of high quality hereto-semiconductor with cBN and diamond single crystals, and paves the way for future development.  相似文献   
5.
High-quality diamond single crystals with micron grain size are synthesized with a new high-pressure and high-temperature (HPHT) synthesis technique in a cubic anvil high pressure apparatus. Morphology of the synthesized diamonds is observed by a scanning electron microscope (SEM). The samples are characterized using laser Raman spectra. The results show that the new synthesis technique improves the nucleation of diamond greatly, and diamond single crystals with perfect morphology and micron grain size are successfully synthesized, with the average grain size of about 6μm. This work provides a new synthesis technique to implement industrialization of high-quality diamond single crystals with super-fine grain size, and paves the way for future development.  相似文献   
6.
In this paper, we explore diamond synthesis with a series of experiments using an Fe-Ni catalyst and a P3N5 additive in the temperature range of 1250-1550 ℃ and the pressure range of 5.0-6.3 GPa. We also investigate the influence of nitrogen on diamond crystallization. Our results show that the synthesis conditions (temperature and pressure) increase with the amount of P3N5additive increasing. The nitrogen impurity can significantly influence the diamond morphology. The diamonds stably grow into strip and lamellar shapes in the nitrogen-rich environment. The Fourier-transform infrared spectrum shows that the nitrogen concentration increases rapidly with the content of P3N5additive increasing. By spectrum analysis, we find that with the increase of the nitrogen concentration, the Ib-type nitrogen atoms can aggregate in the A-centre form. The highest A-centre nitrogen concentration is approximately 840 ppm.  相似文献   
7.
Research of vortex properties in type-Ⅱ superconductors is of great importance for potential applications and fundamental physics. Here, we present a comprehensive study of the critical current density Jc, vortex pinning,and phase diagram of Na Cl-type In Te1-x Sex(x = 0, 0.1, 0.2) superconductors synthesized by high-pressure technique. Our studies reveal that the values of Jc calculated by the Bean model exceed 104A/cm2 in the In Te1-x Se  相似文献   
8.
Shuai Han 《中国物理 B》2023,32(1):16101-016101
We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures, they being Sr$_{3}$Ge, Sr$_{2}$Ge, SrGe, SrGe$_{2}$, SrGe$_{3}$, and SrGe$_{4}$. We demonstrate the interesting structure evolution behaviors in Sr-Ge system with the increase of germanium content, Ge atoms arranging into isolated anions in Sr$_{3}$Ge, chains in Sr$_{2}$Ge, square units in SrGe, trigonal units and hexahedrons in SrGe$_{2}$, cages in SrGe$_{3}$, hexagons and Ge$_{8}$ rings in SrGe$_{4}$. The structural diversity produces various manifestations of electronic structures, which is of benefit to electrical transportation. Among them, these novel phases with metallic structures show superconductivity (maximum $T_{\rm c}\sim 8.94$ K for Pmmn Sr$_{3}$Ge). Notably, the n-type semiconducting Pnma SrGe$_{2}$ structure exhibits high Seebeck coefficient and excellent electrical conductivity along the $y$ direction, leading to a high $ZT$ value up to 1.55 at 500 K, which can be potential candidates as high-performance thermoelectrics. Our results will enable the development of fundamental science in condensed matter physics and potential applications in novel electronics or thermoelectric materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号