首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InAlAs/InGaAs high electron mobility transistors(HEMTs) on an InP substrate with well-balanced cutoff frequency fTand maximum oscillation frequency fmax are reported. An InAlAs/InGaAs HEMT with 100-nm gate length and gate width of 2 × 50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain–gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT= 249 GHz and fmax = 415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 Ω·mm. Moreover,the fTobtained in this work is the highest ever reported in 100-nm gate length InAlAs/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.  相似文献   

2.
InA1As/InGaAs high electron mobility transistors (HEMTs) on an InP substrate with well-balanced cutoff frequency fT and maximum oscillation frequency frnax are reported. An InA1As/InGaAs HEMT with 100-nm gate length and gate width of 2 × 50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain-gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT = 249 GHz and fmax = 415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 0.mm. Moreover, the fT obtained in this work is the highest ever reported in 100-nm gate length InA1As/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.  相似文献   

3.
Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The channel of the new device is In0.7Ga0.3As,and the gate length is 100 nm.A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained.The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz.In addition,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.  相似文献   

4.
李海鸥  黄伟  邓泽华  邓小芳  刘纪美 《中国物理 B》2011,20(6):68502-068502
The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility tran-sistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.  相似文献   

5.
A novel PMMA/PMGI/ZEP520 trilayer resist electron beam lithograph (EBL) technology is successfully developed and used to fabricate the 150 nm gate-length In0.7Ga0.3As/In0.52Al0.48As Pseudomorphic HEMT on an InP substrate, of which the material structure is successfully designed and optimized. A perfect profile of T?gate is successfully obtained. These fabricated devices demonstrate excellent dc and rf characteristics: the transconductance Gm, maximum saturation drain?to-source current IDSS, threshold voltage VT, maximum current gain frequency fT derived from h21, maximum frequency of oscillation derived from maximum available power gain/maximum stable gain and from unilateral power?gain of metamorphic InGaAs/InAlAs high electron mobility transistors (HEMTs) are 470 mS/mm, 560 mA/mm, -1.0 V, 76 GHz, 135 GHz and 436 GHz, respectively. The excellent high frequency performances promise the possibility of metamorphic HEMTs for millimeter-wave applications.  相似文献   

6.
AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.  相似文献   

7.
We report on the performance of La203/InA1N/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) and InA1N/GaN high electron mobility transistors (HEMTs). The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device, while the gate leakage current in the reverse direction could be reduced by four orders of magnitude. Compared with the HEMT device of a similar geometry, MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

8.
The degradation of AlGaN/GaN high electron mobility transistors (HEMTs) has a close relationship with a model of traps in AlGaN barriers as a result of high electric field. We mainly discuss the impacts of strong electrical field on the AlGaN barrier thickness of AlGaN/GaN HEMTs. It is found that the device with a thin AlGaN barrier layer is more easily degraded. We study the degradation of four parameters, i.e. the gate series resistance RGate, channel resistance R channel, gate current IG,off at VGS=-5 and VDS=0.1 V, and drain current ID,max at VGS=2 and VDS=5 V. In addition, the degradation mechanisms of the device electrical parameters are also investigated in detail.  相似文献   

9.
The T-gate stem height of In Al As/In Ga As In P-based high electron mobility transistor(HEMT) is increased from165 nm to 250 nm. The influences of increasing the gate stem height on the direct current(DC) and radio frequency(RF)performances of device are investigated. A 120-nm-long gate, 250-nm-high gate stem device exhibits a higher threshold voltage(Vth) of 60 m V than a 120-nm-long gate devices with a short gate stem, caused by more Pt distributions on the gate foot edges of the high Ti/Pt/Au gate. The Pt distribution in Schottky contact metal is found to increase with the gate stem height or the gate length increasing, and thus enhancing the Schottky barrier height and expanding the gate length,which can be due to the increased internal tensile stress of Pt. The more Pt distributions for the high gate stem device also lead to more obvious Pt sinking, which reduces the distance between the gate and the In Ga As channel so that the transconductance(gm) of the high gate stem device is 70 m S/mm larger than that of the short stem device. As for the RF performances,the gate extrinsic parasitic capacitance decreases and the intrinsic transconductance increases after the gate stem height has been increased, so the RF performances of device are obviously improved. The high gate stem device yields a maximum ft of 270 GHz and fmax of 460 GHz, while the short gate stem device has a maximum ft of 240 GHz and the fmax of 370 GHz.  相似文献   

10.
High-performance Al Ga N/Ga N high electron mobility transistors(HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition(MOCVD) with a selective non-planar n-type Ga N source/drain(S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance(gm) of 247 m S/mm. The current gain cutoff frequency f T and maximum oscillation frequency f MAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard Ga N HEMT on silicon substrate, the fTand fMAXis 50% and 52% higher, respectively.  相似文献   

11.
孙树祥  吉慧芳  姚会娟  李胜  金智  丁芃  钟英辉 《中国物理 B》2016,25(10):108501-108501
Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f_(max)) of 385 GHz.  相似文献   

12.
An X-band AlGaN/GaN high-electron-mobility transistor (HEMT) on SiC substrate with high microwave power performances has been achieved. Its small-signal characteristics with a gate-length of 0.4 μm showed a unity current gain cut-off frequency (fT) of 22 GHz and a maximum oscillation frequency (fmax) of 65 GHz. The GaN HEMT device with a gate width of 1 mm exhibited a continuous-wave saturated output power of 10.2 W and a linear gain of 14.8 dB at 8 GHz, and successfully achieved the power-added efficiency ...  相似文献   

13.
We report dc and the first-ever measured small signal rf performance of epitaxial graphene field-effect transistors (GFETs), where the epitaxial graphene is grown by chemical vapor deposition (CVD) on a 2-inch c-plane sapphire substrate. Our epitaxial graphene material has a good flatness and uniformity due to the low carbon concentration during the graphene growth. With a gate length Lg = 100 nm, the maximum drain source current Ids and peak transconductance gm reach 0.92 A/mm and 0.143 S/mm, respectively, which are the highest results reported for GFETs directly grown on sapphire. The extrinsic cutoff frequency (fT) and maximum oscillation frequency (fmax) of the device are 12 GHz and 9.5 GHz, and up to 32 GHz and 21.5 GHz after de-embedding, respectively. Our work proves that epitaxial graphene on sapphire substrates is a promising candidate for rf electronics.  相似文献   

14.
冯倩  李倩  邢韬  王强  张进成  郝跃 《中国物理 B》2012,21(6):67305-067305
We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOSHEMTs) and InAlN/GaN high electron mobility transistors(HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

15.
In this paper,the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors(HEMTs),featuring a 50-nm and a 150-nm GaN thick channel layer,respectively,are compared.The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage(SVoff).Device simulation indicates that thickening the channel increases the drain-induced barrier lowering(DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate.The increase of BVoff in the thick channel device is due to the reduction of the electric field.These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BVoff in AlGaN/GaN HEMTs.  相似文献   

16.
The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications.The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier.F-based etching can be self-terminated after removing SiN,leaving the AlGaN barrier in the gate region.With this in-situ SiN and thin barrier etch-stop structure,the short channel effect can be suppressed,meanwhile achieving highly precisely controlled and low damage etching process.The device shows a maximum drain current of 1022 mA/mm,a peak transconductance of 459 mS/mm,and a maximum oscillation frequency(fmax)of 248 GHz.  相似文献   

17.
We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOSHEMTs) and InAlN/GaN high electron mobility transistors(HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs = 4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs = 1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.  相似文献   

18.
The effects of various notch structures on direct current(DC) and radio frequency(RF) performances of AlGaN/GaN high electron mobility transistors(HEMTs) are analyzed.The AlGaN/GaN HEMTs,each with a 0.8-μm gate length,50-μm gate width,and 3-μm source-drain distance in various notch structures at the AlGaN/GaN barrier layer,are manufactured to achieve the desired DC and RF characteristics.The maximum drain current(I_(ds,max)),pinch-off voltage(V_(th)),maximum transconductance(g_m),gate voltage swing(GVS),subthreshold current,gate leakage current,pulsed I-V characteristics,breakdown voltage,cut-off frequency(f_T),and maximum oscillation frequency(f_(max)) are investigated.The results show that the double-notch structure HEMT has a 30% improvement of gate voltage swing,a 42.2% improvement of breakdown voltage,and a 9% improvement of cut-off frequency compared with the conventional HEMT.The notch structure also has a good suppression of the current collapse.  相似文献   

19.
We present a distributed feedback quantum cascade laser (DFB-QCL) emitting at a wavelength of 8.5μm and operating up to 420K (147℃) with a low-threshold current density in pulsed mode. The DFB-QCLs studied are based on a four-well active design; the central portion of the waveguide consists of 60 periods of lattice matched InP-based InGaAs/AlInAs. In the design of the device, an active structure with lower doping and a deep-top grating process are utilized to achieve high temperature operation with a lower-threshold current density. At 420K, a low-threshold current density of 3.28 kA/cm^2 and a single mode peak power of 15mW are achieved on an epilayer-up mounting device with ridge width of 26μm and cavity length of 3.0mm. A side mode suppression ratio of 25 dB at 420 K is obtained.  相似文献   

20.
We report on the high breakdown performance of AlGaN/GaN high electron mobility transistors (HEMTs) grown on 4-inch silicon substrates. The HEMT structure including three Al-content step-graded AlGaN transition layers has a total thickness of 2.7 μm. The HEMT with a gate width WG of 300 μm acquires a maximum off-state breakdown voltage (BV) of 550 V and a maximum drain current of 527 mA/mm at a gate voltage of 2 V. It is found that BV is improved with the increase of gate-drain distance LGD until it exceeds 8 μm and then BV is tended to saturation. While the maximum drain current drops continuously with the increase of LGD. The HEMT with a WG of 3 mm and a LGD of 8 μm obtains an off-state BV of 500 V. Its maximum leakage current is just 13 μA when the drain voltage is below 400 V. The device exhibits a maximum output current of 1 A with a maximum transconductance of 242 mS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号