首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   9篇
物理学   9篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications.The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier.F-based etching can be self-terminated after removing SiN,leaving the AlGaN barrier in the gate region.With this in-situ SiN and thin barrier etch-stop structure,the short channel effect can be suppressed,meanwhile achieving highly precisely controlled and low damage etching process.The device shows a maximum drain current of 1022 mA/mm,a peak transconductance of 459 mS/mm,and a maximum oscillation frequency(fmax)of 248 GHz.  相似文献   
2.
Sheng Wu 《中国物理 B》2021,30(8):87102-087102
Ultra-thin barrier (UTB) 4-nm-AlGaN/GaN normally-off high electron mobility transistors (HEMTs) having a high current gain cut-off frequency (fT) are demonstrated by the stress-engineered compressive SiN trench technology. The compressive in-situ SiN guarantees the UTB-AlGaN/GaN heterostructure can operate a high electron density of 1.27×1013cm-2, a high uniform sheet resistance of 312.8 Ω /□, but a negative threshold for the short-gate devices fabricated on it. With the lateral stress-engineering by full removing in-situ SiN in the 600-nm SiN trench, the short-gated (70 nm) devices obtain a threshold of 0.2 V, achieving the devices operating at enhancement-mode (E-mode). Meanwhile, the novel device also can operate a large current of 610 mA/mm and a high transconductance of 394 mS/mm for the E-mode devices. Most of all, a high fT/fmax of 128 GHz/255 GHz is obtained, which is the highest value among the reported E-mode AlGaN/GaN HEMTs. Besides, being together with the 211 GHz/346 GHz of fT/fmax for the D-mode HEMTs fabricated on the same materials, this design of E/D-mode with the realization of fmax over 200 GHz in this work is the first one that can be used in Q-band mixed-signal application with further optimization. And the minimized processing difference between the E- and D-mode designs the addition of the SiN trench, will promise an enormous competitive advantage in the fabricating costs.  相似文献   
3.
宓珉瀚  张凯  赵胜雷  王冲  张进成  马晓华  郝跃 《中国物理 B》2015,24(2):27303-027303
The influence of an N_2O plasma pre-treatment technique on characteristics of AlGaN/GaN high electron mobility transistor(HEMT) prepared by using a plasma-enhanced chemical vapor deposition(PECVD) system is presented.After the plasma treatment,the peak transconductance(g_m) increases from 209 mS/mm to 293 mS/mm.Moreover,it is observed that the reverse gate leakage current is lowered by one order of magnitude and the drain current dispersion is improved in the plasma-treated device.From the analysis of frequency-dependent conductance,it can be seen that the trap state density(D_T) and time constant(τ_T) of the N20-treated device are smaller than those of a non-treated device.The results indicate that the N_2O plasma pre-pretreatment before the gate metal deposition could be a promising approach to enhancing the performance of the device.  相似文献   
4.
In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages(BVs)simultaneously in AlGaN/GaN high-electron mobility transistors(HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmicdrain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from-5 V to-49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.  相似文献   
5.
We demonstrated an AlGaN/GaN high electron mobility transistor(HEMT)namely double-Vthcoupling HEMT(DVC-HEMT)fabricated by connecting different threshold voltage(Vth)values including the slant recess element and planar element in parallel along the gate width with N;O plasma treatment on the gate region.The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm.Furthermore,the proposed architecture also features an exceptional linearity performance with 1-d B compression point(P1 d B)of 28 d Bm,whereas that of the Fin-like HEMT is 25.2 d Bm.The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.  相似文献   
6.
宓珉瀚  张凯  陈兴  赵胜雷  王冲  张进成  马晓华  郝跃 《中国物理 B》2014,23(7):77304-077304
A non-recessed-gate quasi-E-mode double heterojunction AlGaN/GaN high electron mobility transistor(quasi-EDHEMT) with a thin barrier, high breakdown voltage and good performance of drain induced barrier lowering(DIBL)was presented. Due to the metal organic chemical vapor deposition(MOCVD) grown 9-nm undoped AlGaN barrier, the effect that the gate metal depleted the two-dimensiomal electron gas(2DEG) was greatly impressed. Therefore, the density of carriers in the channel was nearly zero. Hence, the threshold voltage was above 0 V. Quasi-E-DHEMT with 4.1-μm source-to-drain distance, 2.6-μm gate-to-drain distance, and 0.5-μm gate length showed a drain current of 260 mA/mm.The threshold voltage of this device was 0.165 V when the drain voltage was 10 V and the DIBL was 5.26 mV/V. The quasi-E-DHEMT drain leakage current at a drain voltage of 146 V and a gate voltage of-6 V was below 1 mA/mm. This indicated that the hard breakdown voltage was more than 146 V.  相似文献   
7.
In this paper,the enhancement-mode AlGaN/GaN HEMT combined with the low damage recessed-gate etching and the optimized oxygen plasma treatment was fabricated.Scanning electron microscope/energy dispersive spectrometer(SEM/EDS) method and x-ray photoelectron spectroscopy(XPS) method were used to confirm the formation of oxides.Based on the experimental results,the obtained enhancement-mode HEMT exhibited a threshold voltage of 0.5 V,a high peak transconductance of 210 mS/mm,and a maximum drain current of 610 mA/mm at the gate bias of 4 V.Meanwhile,the on/off current ratio of enhancement-mode HEMT was as high as 10~8,drain induced barrier lowering(DIBL) was as low as 5 raV/V,and subthreshold swing(SS) of 80 mV/decade was obtained.Compared with the conventional HEMT,the Schottky reverse current of enhancement-mode HEMT was three orders of magnitude lower,and the off-state breakdown voltage of which was higher.In addition,a power gain cutoff frequency(/max) of the enhancement-mode HEMT was larger than that of the conventional one.  相似文献   
8.
Zhihong Chen 《中国物理 B》2022,31(11):117105-117105
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.  相似文献   
9.
The effects of gate length L_G on breakdown voltage VBRare investigated in AlGaN/GaN high-electron-mobility transistors(HEMTs) with L_G= 1 μm~20 μm. With the increase of L_G, VBRis first increased, and then saturated at LG= 3 μm. For the HEMT with L_G= 1 μm, breakdown voltage VBRis 117 V, and it can be enhanced to 148 V for the HEMT with L-_G= 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage.A similar suppression of the impact ionization exists in the HEMTs with LG 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG= 3 μm~20 μm, and their breakdown voltages are in a range of 140 V–156 V.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号