首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   62篇
  国内免费   4篇
化学   12篇
物理学   113篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   16篇
  2013年   4篇
  2012年   7篇
  2011年   13篇
  2010年   13篇
  2009年   11篇
  2008年   14篇
  2007年   6篇
  2006年   10篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
11.
基于在聚合物中掺杂染料DCJTB的白色有机电致发光器件   总被引:1,自引:0,他引:1  
将Alq3和DCJTB作为掺杂物与基质PVK按照不同比例混合共溶,旋涂成膜,制备了PVK∶Alq3∶DCJTB为发光层的结构为ITO/ PVK∶Alq3∶DCJTB/ BCP/Alq3/LiF/Al的器件,其中Alq3和BCP分别用作电子传输层和空穴阻挡层,PVK用作蓝光发光层和空穴传输层。保持PVK和DCJTB的质量比为100∶1不变,改变PVK和 Alq3的质量比,当PVK和Alq3的质量比为20∶1时,得到了效果较好的白光。器件在电压为14 V时,色坐标达到(0.33,0.36),在10~14 V范围内变化甚微。  相似文献   
12.
掺杂型有机电致发光器件中载流子累积、载流子复合等物理过程的深入了解对提高器件效率和稳定性有重要作用。通过瞬态电致发光测量可以研究掺杂型有机电致发光器件内部载流子累积。对结构为: ITO/NPB(30 nm)/host: Ir(ppy)3/BCP(10 nm)/Alq3(20 nm)/LiF(0.7 nm)/Al(100 nm)的器件分别研究主体材料以及客体掺杂浓度变化对有机掺杂型器件瞬态发光行为的影响。实验发现,当单脉冲驱动电压关闭后,只有TAZ: Ir(ppy)3掺杂器件出现发光瞬时过冲现象,即发光强度衰减到一定时间时突然增强;且随着客体掺杂浓度的增加,瞬时过冲强度逐渐增强。通过分析TAZ: Ir(ppy)3掺杂器件的瞬时过冲强度对主体材料与掺杂浓度的依赖关系,进一步发现,瞬时过冲效应强度主要受限于发光层内部积累的电子载流子;TAZ: Ir(ppy)3发光层内电子容易被客体材料分子俘获并积累,电场突变时陷阱电子容易跳跃到主体材料上并与主体材料上积累的空穴形成激子,激子能量传递到客体材料上并复合发光继而出现发光强度的瞬时过冲现象。研究发光瞬时过冲行为可探究器件发光层内的载流子和激子的动态行为,有利于指导器件的设计,从而减少积累电荷的影响,提高器件的性能。  相似文献   
13.
黄迪  徐征  赵谡玲 《物理学报》2014,63(2):27301-027301
采用poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-?uoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7)作为有机发光二极管器件的阳极修饰层,制备了结构为indium tin oxide(ITO)/PTB7(不同浓度)/N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine(NPB,40 nm)/8-hydroxyquinoline(Alq3,60 nm)/LiF(1 nm)/Al的系列器件,同时研究了不同浓度的PTB7对器件性能的影响.PTB7的最佳浓度为0.25 mg/mL,器件性能得到明显的改善,起亮电压为4.3 V.当驱动电压为14.6 V时,最大亮度为45800 cd/m2,最大电流效率为9.1 cd/A.与没有PTB7修饰的器件相比,其起亮电压降低了1.9 V,最高亮度提升了78.5%.器件性能提高归因于PTB7的插入使得空穴注入和传输能力大大改善.  相似文献   
14.
以TTA为配体合成了新的共掺杂稀土配合物Tb0.5Eu0.5(TTA)3Dipy,通过与PVK的掺杂,制备了以PVK:Tb0.5Eu0.5(TTA)3 Dipy为发光层的结构为:ITO/PVK:Tb0.5Eu0.5(TTA)3Dipy/BCP/Al的发光器件,在直流电压的驱动下,发现了铕在612 nm处的特征发射,和PVK在410 nm处的发光.此外,还观察到了位于490 nm处的新的发光峰,通过分析研究,认为新的发光来自于稀土配合物的配体和BCP之间相互作用形成的电致激基复合物.用PBD代替了BCP作为电子传输层,制备了结构为:ITO/PVK:Tb0.5Eu0.5(TTA)3DiPy/PBD/Al的发光器件,得到了纯的红色发光.  相似文献   
15.
利用水热法合成了YLiF4: Er3 , Tm3 , Yb3 , 其中Er3 和Yb3 的浓度保持固定不变, 分别为1 mol%和1.5 mol%, Tm3 浓度变化范围是2 mol%~8 mol%. 在这种共掺杂体系中, 同时观察到了Er3 , Tm3 和Yb3 的吸收, 且Tm3 的吸收随着其浓度的增强而增强. 在980 nm光的激发下, 当Tm3 浓度很小时, 这种材料的上转换发光为白光. 其中蓝光主要来源于Tm3 的激发态1G4到基态3H6的跃迁, 绿光来源于Er3 的4S3/2和2H11/2到基态4I15/2的跃迁, 红光既来源于Tm3 的1G4→3F4的跃迁, 也来源于Er3 的4F9/2→4I15/2的跃迁. 并且这种上转换发光强度随着Tm3 浓度的增强而降低, 但对应不同能级跃迁的发光强度降低的幅度不同, 这是因为Er3 和Tm3 之间的相互作用.  相似文献   
16.
水热法合成了YL iF4∶Er3 ,Tm3 ,Yb3 ,其中Er3 、Yb3 和Tm3 的摩尔分数分别为1%、1.5%和2%。当用355 nm光激发时,其发光为蓝色,峰值位于450 nm,对应于Tm3 的1D2→3F4跃迁。用378 nm激发时,发光为绿色,主要发光峰位于552 nm。980 nm光激发时,发光为白色,发光峰分别位于665(651),552(543),484,450 nm处,并在648 nm处还观察到了一个发光峰,其中最强的发射为红光。YL iF4∶Er3 ,Tm3 ,Yb3 的蓝光来源于Tm3 的激发态1G4到基态3H6的跃迁,绿光来源于Er3 的4S3/2和2H11/2到基态4I15/2的跃迁,红光既来源于Tm3 的1G4→3F4的跃迁,也来源于Er3 的4F9/2→4I15/2的跃迁。在上转换发光中,还探测到了紫外光359 nm的发射。监测665 nm得到的激发光谱不同于监测552 nm的激发光谱,在665 nm的激发光谱中出现了对应Tm3 的1G4能级的峰。在双对数曲线中,蓝光484 nm、绿光552 nm和红光665 nm的斜率分别为2.25、2.28和2.21,紫外光359 nm的斜率为2.85。因此在980 nm激发下,蓝光484 nm、绿光552 nm和红光665 nm都是双光子过程,紫外光359 nm的发射是三光子过程。  相似文献   
17.
利用低温水热法生长的ZnO纳米棒(ZnO-NRs),和p型有机半导体材料聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯撑乙烯撑](MEH-PPV)复合制备了结构为“ITO/ZnO晶种/ZnO-NRs/MEH-PPV/Al”的发光器件。测试结果发现,该器件具有非常好的二极管整流特性。对ZnO-NRs/M EH-PPV异质结施加超过17 V的反向偏压时,可同时获得两种半导体材料的发光,且ZnO近紫外光(380 nm )发射强度远大于 M EH-PPV的红橙光强度,发光功率随着反向偏压的增加迅速增强,然而施加正向偏压时未探测到发光。该器件的发光机理不同于其他文献报道的正偏压发光,而属于反偏压发光器件,其发光机理归因于有机无机复合异质结的界面特殊性和ZnO-NRs的纳米尺寸效应,反偏压下器件实现的是载流子隧穿发光,而正偏压时载流子以表面态的无辐射复合及漏电流方式消耗。  相似文献   
18.
孙力  邵喜斌  钱磊  赵谡玲 《发光学报》2010,31(3):331-336
用不同溶剂中的前驱物旋涂成PVK层,制备了ITO/PEDOT:PSS/PVK/Ca:Al器件,以及相同结构不同PVK分子量的器件。通过测试分析认为:器件的电致发光谱中590nm波长处的发光峰来自于PVK三线态的激基复合物,并且发现其强度依赖于PVK的分子构型,即在PVK分子中相邻咔唑基团重叠程度。通过比较不同紫外辐照剂量后的PVK器件的发光,发现适度的UV辐照后的PVK分子构型中相邻咔唑基团处于全重叠的状态增加,在电致发光时会形成更多的三线态激子,因而提高了PLED器件的发光效率。  相似文献   
19.
通过扫描电镜和X射线衍射对SiO2衬底上生长并五苯和酞菁铜薄膜的表面形貌进行表征,并得到在SiO2衬底上生长的并五苯薄膜是以岛状结构生长,其大小约为100nm,且薄膜有较好的结晶取向,呈多晶态存在. 酞菁铜薄膜则没有表现出明显的生长机理,其呈非晶态存在. 还对通过掩膜的方法制作得以酞菁铜和并五苯为有源层的顶栅极有机薄膜晶体管的特性进行了研究. 有源层的厚度为40nm,绝缘层SiO2的厚度为250nm,器件的沟道宽长比(W/关键词: 有机薄膜晶体管 并五苯薄膜 酞菁铜薄膜 μEF)')" href="#">场效应迁移率(μEF)  相似文献   
20.
OLED技术被认为是最有可能取代液晶显示的全新技术,而OLED中的有机电致磷光器件是近年来的研究热点.有机电致磷光器件的发光层往往采用主客体掺杂体系,主客体分子内的能量传递是磷光发光体分子被激发的主要途径,因此选择吸收能量和传递能量好的主体材料是改进有机电致磷光器件性能的主要途径之一.文章分别以PVK和CBP作为主体材料,以磷光材料Ir(PPY)3和荧光材料Rubrene作为掺杂剂,制备了不同配比的器件,研究了主体材料和掺杂剂之间的能量传递特性.结果发现,这两种主体材料分别通过Ir(ppy)3向Rubrene传递能量是主要的能量传递机制,而且CBP作为主体时能量传递比PVK更充分.另外掺入Ir(ppy)3后的器件比不掺Ir(ppy)3的器件在相同电压下的光功率明显增强.当我们增加Ir(PPY)3的浓度时,相同电压下的光功率下降,浓度猝灭效应增强.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号