首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
用高能离子注入(160keV)的方法对InAs/GaAs量子点结构进行掺杂,研究了不同退火工艺处理后量子点的光致发光和电学性能.相对于长时间退火,快速退火处理后的量子点发光通常较强.在相同的退火条件下,量子点发光峰位随着Mn注入剂量的增加,先是往高能量端快速移动,而后发光峰又往低能方向移动.后者可能是由于Mn原子进入InAs量子点,释放了InAs量子点中的应变所致.对于高注入剂量样品和长时间退火样品,变温电阻曲线在40 K附近会出现反常行为. 关键词: 离子注入 InAs/GaAs量子点 光致发光 团簇  相似文献   

2.
利用分子束外延技术,通过InAs/GaAs数字合金超晶格代替传统的直接生长InGaAs层的方式,在GaAs(100)衬底上生长了InAs量子点结构并成功制备了1.3μm InAs量子点激光器.通过原子力显微镜和光致荧光谱测试手段,对传统生长模式和数字合金超晶格生长模式的两种样品进行了表征,研究发现采用32周期InAs/GaAs数字合金超晶格样品的量子点密度非常高,发光性能良好.通过与常规生长方式所制备激光器的性能对比,发现采用InAs/GaAs数字合金超晶格生长InAs量子点的有源区也可以得到高质量的激光器.利用该方式生长的InAs量子点激光器的阈值电流为24 mA,相应的阈值电流密度仅为75 A/cm2,最高工作温度达到120℃.InAs/GaAs数字合金超晶格既可以保证生长过程中源炉的温度保持不变,还可以对InGaAs层的组分实现灵活调控.不需要改变生长速度,通过改变InAs/GaAs数字合金超晶格的周期数以及InAs层和GaAs层的厚度,便可以获得任意组分的InGaAs,从而得到不同发光波长的激光器.这种生长方式对量子点有源区的结构设计和外延生长提供了新思路.  相似文献   

3.
利用自组织生长InAs/GaAs量子点的垂直相关排列机制,生长了上下两层用6.5nm GaAs间隔的InAs结构.下层InAs已经成岛,由于应力传递效应,上层InAs由二维生长向三维成岛生长的转变提前发生,临界厚度从1.7ML变成小于1.5ML.透射电子显微镜截面象显示形成上下两层高度差别很大的InAs量子点,但是由于两层量子点之间存在强烈的电子耦合,光致发光谱中只有与包含大量子点的InAs层相对应的一个发光峰.  相似文献   

4.
利用分子束外延技术(MBE),在GaAs(001)衬底上自组织生长了不同结构的InAs量子点样品,并制备了量子点红外探测器件。利用原子力显微镜(AFM)和光致发光(PL)光谱研究了量子点的表面结构、形貌和光学性质。渐变InGaAs层的插入有效地释放了InAs量子点所受的应力,抑制了量子点中In组分的偏析,提高了外延层的生长质量,降低了势垒高度,使InAs量子点荧光波长红移。伏安特性曲线和光电流(PC)谱结果表明,生长条件的优化提高了器件的红外响应,具有组分渐变的InGaAs层的探测器响应波长发生明显红移。  相似文献   

5.
王红培  王广龙  喻颖  徐应强  倪海桥  牛智川  高凤岐 《物理学报》2013,62(20):207303-207303
采用分子束外延技术对δ掺杂GaAs/AlxGa1-xAs二维电子气(2DEG)样品进行了生长. 在样品生长过程中, 分别改变掺杂浓度(Nd)、空间隔离层厚度(Wd) 和AlxGa1-xAs中Al组分(xAl)的大小, 并在双温(300 K, 78 K)条件下对生长的样品进行了霍尔测量; 结合测试结果, 分别对Nd, WdxAl与GaAs/AlxGa1-xAs 2DEG的载流子浓度和迁移率之间的关系规律进行了细致的分析讨论. 生长了包含有低密度InAs量子点层的δ掺杂GaAs/AlxGa1-xAs 2DEG 样品, 采用梯度生长法得到了不同密度的InAs量子点. 霍尔测量结果表明, 随着InAs量子点密度的增加, GaAs/AlxGa1-xAs 2DEG的迁移率大幅度减小, 实验中获得了密度最低为16×108/cm2的InAs量子点样品. 实验结果为内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs 2DEG的研究和应用提供了依据和参考. 关键词: 二维电子气 InAs量子点 载流子浓度 迁移率  相似文献   

6.
利用固源分子束外延技术,在In0.15Ga0.85As/GaAs量子阱生长了两个InAs/In0.15Ga0.85As量子点(DWELL)样品.通过改变其中一个InAs DWELL样品中的In0.15Ga0.85As阱层的厚度和生长温度,获得了量子点尺寸增大而且尺寸分布更均匀的结果.结合光致发光光谱(PL)和压电调制光谱(PzR)实验结果,发现该样品量子点的光学性质也同时得到 关键词: 合金分解效应 0.15Ga0.85As量子点')" href="#">InAs/In0.15Ga0.85As量子点 光致发光光谱 压电调制光谱  相似文献   

7.
InAs/GaAs量子点是重要的单光子源,位置可控量子点对实现可寻址易集成的高性能量子点光源具有重要意义.本文详细研究了氢原子条件下GaAs (001)图形衬底的低温脱氧过程,低温GaAs缓冲层生长中沟槽形貌的演化过程,以及沟槽形貌对量子点形核位置的影响.发现GaAs衬底上纳米沟槽侧壁的倾斜角较小时, InAs量子点会优先生长于沟槽底部;当沟槽的侧壁倾斜角较大时, InAs量子点则会优先生长于沟槽两侧的外边沿位置.此外,本文还研究了纳米孔洞侧壁的倾斜角对量子点成核位置的影响,实现了双量子点分子和四量子点分子的定位生长.  相似文献   

8.
利用固源分子束外延技术,在In0.15Ga0.85As/GaAs量子阱生长了两个InAs/In0.15Ga0.85As量子点(DWELL)样品.通过改变其中一个InAs DWELL样品中的In0.15Ga0.85As阱层的厚度和生长温度,获得了量子点尺寸增大而且尺寸分布更均匀的结果.结合光致发光光谱(PL)和压电调制光谱(PzR)实验结果,发现该样品量子点的光学性质也同时得到了极大的优化.基于有效质量近似的数值计算结果表明:量子点后生长过程中应力导致In0.15Ga0.85As阱层合金分解机理是导致量子点尺寸和光学性质得到优化的主要原因.  相似文献   

9.
采用分子束外延技术,分别在480,520℃的生长温度下,制备了淀积厚度2.7ML的InAs/GaAs量子点。用原子力显微镜对样品进行形貌测试和统计分布。结果表明,在相应的生长温度下,量子点密度分别为8.0×1010,5.0×109cm-2,提高生长温度有利于获得大尺寸的量子点,并且量子点按高度呈双模分布。结合光致发光谱的分析,在480℃的生长条件下,最近邻量子点之间的合并导致了量子点尺寸的双模分布;而在525℃的生长温度下,In偏析和InAs解析是形成双模分布的主要原因。  相似文献   

10.
基于现有的实验,利用不同频率的光脉冲耦合到InAs/GaAs量子点的不同能级之间可形成梯形、Λ形和V形等3类量子点电磁诱导透明介质.继而研究这三类能级构型InAs/GaAs量子点电磁诱导透明介质中的光孤子形成和存储性质,结果表明,梯形和Λ形InAs/GaAs量子点体系不但可形成光孤子还可以实现光孤子的存储与读取,且其所存储光孤子的保真度比光存储的保真度高;但V形InAs/GaAs量子点体系却不能形成光孤子,这是由于体系的非线性效应非常弱.有趣的是在相同的实验参数下,Λ形InAs/GaAs量子点体系所存储的光孤子幅度比梯形所存储的光孤子幅度大.这为半导体量子点器件对所存储光孤子进行调幅操作提供了理论依据.  相似文献   

11.
MBE自组织生长多层竖直自对准InAs量子点结构的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
朱东海  范缇文 《发光学报》1997,18(3):228-231
利用MBE方法在(001)GaAs衬底上生长了多层竖直自对准InAs量子点结构。透射电子显微镜的观察表明,多层量子点成一系列柱状分布。同单层量子点相比,多层量子点的光荧光谱线发生红移。这表明由于量子点中载流子波函数的扩展和交迭,柱中量子点之间有耦合现象发生。光荧光谱线半高宽随温度的反常变化说明载流子还会在邻近柱中隧穿.  相似文献   

12.
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.  相似文献   

13.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

14.
The photoluminescence (PL), its temperature dependence and X ray diffraction (XRD) have been studied in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs), obtained with the variation of QD growth temperatures (470–535 °C). The increase of QD growth temperatures is accompanied by the enlargement of QD lateral sizes (from 12 up to 28 nm) and by the shift non monotonously of PL peak positions. The fitting procedure has been applied for the analysis of the temperature dependence of PL peaks. The obtained fitting parameters testify that in studied QD structures the process of In/Ga interdiffusion between QDs and capping/buffer layers takes place partially. However this process cannot explain the difference in PL peak positions.  相似文献   

15.
Coherent InAs islands separated by GaAs spacer (d) layers are shown to exhibit self-organized growth along the vertical direction. A vertically stacked layer structure is useful for controlling the size distribution of quantum dots. The thickness of the GaAs spacer has been varied to study its influence on the structural and optical properties. The structural and optical properties of multilayer InAs/GaAs quantum dots (QDs) have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The PL full width at half maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 monolayers (ML). For the optimized structure, the TEM image shows that multilayer QDs align vertically in stacks with no observation of apparent structural defects. Furthermore, AFM images showed an improvement of the size uniformity of the QDs in the last layer of QDs with respect to the first one. The effect of growth interruption on the optical properties of the optimized sample (E30) was investigated by PL. The observed red shift is attributed to the evolution of the InAs islands during the growth interruption. We show the possibility of increasing the size of the QDs approaching the strategically important 1.3 m wavelength range (at room temperature) with growth interruption after InAs QD deposition.  相似文献   

16.
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.  相似文献   

17.
采用光致荧光发射谱(PL)和时间分辨荧光发射谱(TRPL)研究了GaAs间隔层厚度对自组装生长的双层InAs/GaAs量子点分子光学性质的影响.首先,测量低温下改变激发强度的PL谱,底层量子点和顶层量子点的PL强度比值随激发强度发生变化,表明两层量子点之间的耦合作用和层间载流子的转移随着间隔层厚度变大而变弱.接着测量改变温度的PL谱,量子点荧光光谱峰值位置(Emax)、半峰全宽及积分强度随温度发生变化,表明GaAs间隔层厚度直接影响到量子点内载流子的动力学过程和量子点发光的热淬灭过程.最后,TRPL测量发现60mL比40mL间隔层厚度样品的载流子隧穿时间有明显延长.  相似文献   

18.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

19.
The photoluminescence (PL) inhomogeneity has been studied in InAs quantum dots (QDs) embedded in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with QDs grown at different temperatures. It was shown that three reasons are responsible for the emission inhomogeneity in studied QD structures: (i) the high concentration of nonradiative recombination centers in the capping In0.15Ga0.85As layer at low QD growth temperatures, (ii) the QD density and size distributions for the structure with QD grown at 510 °C, (iii) the high concentration of nonradiative recombination centers in the GaAs barrier at higher QD growth temperatures.  相似文献   

20.
Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high Tc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号