首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
张增院  郜小勇  冯红亮  马姣民  卢景霄 《物理学报》2011,60(1):16110-016110
利用直流磁控反应溅射技术,通过调节反应气压(RP),在250 ℃衬底温度下制备了一系列氧化银 (AgxO) 薄膜,并利用X射线衍射谱、能量色散谱和分光光度计重点研究了RP对AgxO薄膜的结构和光学性质的影响. 研究结果表明,随着RP从0.5 Pa升高到3.5 Pa,薄膜明显呈现了从两相(AgO+Ag2O)到单相(Ag2O)结构再到两相(Ag2O+AgO)结构的演变. 特 关键词: 氧化银薄膜 直流磁控反应溅射 X射线衍射谱 光学性质  相似文献   

2.
This paper reports that a series of silver oxide (AgxO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 oC and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag2O) to cubic single-phased (Ag2O), and to biphased (Ag2O + AgO) structure. Notably, the cubic single-phased Ag2O film is deposited at the SP = 105 W and an AgO phase with <220> orientation discerned in the AgxO films deposited using the SP > 105 W. The transmissivity and reflectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.  相似文献   

3.
Optical transmittance and reflectance on ferroelectric BaTi2O5 glasses prepared recently by a containerless synthesis technique are measured at room temperature in the wavelength range 190-800nm. The fundamental absorption edge located around 340nm demonstrates the colourless and transparent character of the glass. The optical band gap of 3.32eV has been estimated. The tail of the optical absorption near the fundamental absorption edge is found to follow the Urbach rule. Our analysis of the experimental spectra supports an indirect allowed interband transition between the valence band formed by O-2p orbitals and the conduction band formed by Ti-3d orbitals.  相似文献   

4.
郜小勇  冯红亮  马姣民  张增院 《中国物理 B》2010,19(9):90701-090701
The Ag2O film, as-deposited by direct-current magnetron reactive sputtering at a substrate temperature of 150℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the thermal decomposition temperature to about 200℃, which is helpful to its application in optical and magneto-optical storage. This paper fits its optical constants in terms of a general oscillator model by using measured ellipsometric parameters. The fitted oscillator energy 2.487 eV is close to the optical direct interband transition energy value of the Ag2O film determined by Tauc equation; whereas, the fitted oscillator energy 4.249 eV is far from the fitted plasma oscillator energy 4.756 eV by single-oscillator energy. The photoluminescence spectrum centred at about 2.31 eV indicates a direct-energy gap photoluminescence mechanism of the Ag2O film.  相似文献   

5.
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.  相似文献   

6.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

7.
Preferentially (105)-oriented SrxBi2+yTa2O9 (SBT) thin films on SiN/SiO2/p-Si(100) prepared by the pulsed laser deposition (PLD) method at a temperature as low as 400 °C, which is the lowest process temperature for growing SBT ferroelectric thin films on a silicon nitride film. Excess Bi promotes crystallization of the SBT film. A metal-ferroelectric-nitride-oxide-semiconductor (MFNOS) structure, which is very important in ferroelectric gate memory FET, has been fabricated by depositing the SBT film on silicon nitride-oxide-silicon. The MFNOS structures show capacitance-voltage (C-V) hysteresis corresponding to ferroelectric hysteresis. A memory window of the C-V hysteresis is improved, to be as high as 3.5 V in the SBT(400 nm)/SiNx(7 nm)/SiO2(18 nm)/Si compared with the window of 2.7 V in the SBT(400 nm)/SiO2(27 nm)/Si (MFOS), where the thicknesses of their insulator layers are nearly the same. Little degradation is induced in the C-V characteristics of the SiNx/SiO2/p-Si structure when depositing the SBT film by PLD at low temperature. It is also found that the SiNx layer acts as a diffusion barrier against component atoms in the SBT film during its deposition. Finally, the MFNOS structure prepared at the low temperature is very promising for a next-generation ferroelectric gate memory FET.  相似文献   

8.
We present a comparison between intracavity cooling and external cavity cooling for optical refrigeration. The results show that the intracavity scheme is preferred at low optical densities (〈 0.008), while the external cavity scheme is preferred at higher optical densities (〉 0.01). We can choose the proper scheme for different eases in experiments. Moreover, under the same conditions, taking Yb^3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlFa-NaF) film as an example, the cooling processes of the two scheme are obtained. The calculated results show that intracavity cooling will achieve a larger temperature drop for a thin film sample. Finally, the diode laser may become a candidate for the intraeavity model briefly discussed.  相似文献   

9.
Zn1-xFexO inhomogeneous oxide magnetic semiconductor films with high Fe concentration are prepared by sputtering, and fast annealing is carried out at different temperatures. It is found that magnetic properties are greatly modulated by controlling the composition inhomogeneity and subsequently fast annealing. Both ferromagnetic and paramagnetie components are found to coexist in the as-deposited Zn1-xFexO magnetic semiconductor. In particular, the antiferromagnetic coupling between the neighbouring local ferromagnetic regions is found in the as-deposited Zn0.23Fe0.77O film, and the antiferromagnetic coupling strength increases with increasing temperature from 110K to 300 K. We believe that this unusual antiferromagnetic coupling is mediated by thermally activated hopping carriers.  相似文献   

10.
TiO2 thin films are obtained by dc reactive magnetron sputtering. A target of titanium (99.995%) and a mixture of argon and oxygen gases are used to deposit TiO2 films on to silicon wafers (100). The crystalline structure of deposited and annealed film are deduced by variable-angle spectroscopic ellipsometry (VASE) and supported by x-ray diffractometry. The optical properties of the films are examined by VASE. Measurements of ellipsometry are performed in the spectral range O. 72-3.55 e V at incident angle 75^o. Several SE models, categorized by physical and optical models, are proposed based on the 'simpler better' rule and curve-fits, which are generated and compared to the experimental data using the regression analysis. It has been found that the triple-layer physical model together with the Cody-Lorentz dispersion model offer the most convincing result. The as-deposited films are found to be inhomogeneous and amorphous, whereas the annealed films present the phase transition to anatase and rutile structures. The refractive index of TiO2 thin films increases with annealing temperature. A more detailed analysis further reveals that thickness of the top sub-layer increases, whereas the region of the bottom amorphous sub-layer shrinks when the films are annealed at 300℃.  相似文献   

11.
Pb1-x Srx Te thin films with different strontium (St) compositions axe grown on BaF2 (111) substrates by molecular beam epitaxy (MBE). Using high resolution x-ray diffraction (HPLXRD), we obtain Pb1-xSrxTe lattice constants, which vary in the range 6.462-6.492 A. According to the Vegard law and HRXRD data, Sr compositions in Pb1-xSrxTe thin films range from 0.0-8.0%. The Pb1-xSrxTe refractive index dispersions are attained from infrared transmission spectrum characterized by Fourier transform infrared (FTIR) transmission spectroscopy. It is found that refractive index decreases while Sr content increases in Pb1-xSrx Te. We also simulate the Pb1-xSrxTe transmission spectra theoretically to obtain the optical band gap energies which range between 0.320 e V and 0.449 e V. The simulated results are in good agreement with the FTIR data. Finally, we determine the relation between Pb1-xSrx Te band gap energies and Sr compositions (Eg = 0.320+0.510x-0.930x^2 +184x^3 (eV)).  相似文献   

12.
A series of phosphate glasses of composition 45P2O5–(40???x)CaO–15Na2O–xAg2O (x?=?0, 3, 6, 8, 10 and 12?mol%) with different Ag2O contents were prepared using the melt-quenching technique. The incorporated Ag2O highly influenced the increase of its transition tendency towards crystallisation and, on contrary, reduced the degree of glassification of phosphate glasses. The lowering of glass transition temperature and increase in thermal expansion were observed in glasses against Ag2O inclusions. The crystalline phase transitions of amorphous material during thermal treatment were confirmed by employing X-ray diffraction studies. As revealed by X-ray photoelectron spectroscopy, the incorporated silver oxide into phosphate glass exists in two different oxidation states, Ag2O and AgO. The pyrophosphate and metaphosphate units were predominantly occupied in glass and glass ceramics. The elastic moduli and Vicker's hardness values exhibited the decrease in phosphate glass structural compactness due to Ag2O-incorporation and these values were found to improve because of crystalline transitions.  相似文献   

13.
Thin films of Zn1−xMnxO (x=0.01) diluted magnetic semiconductor were prepared on Si (1 0 0) substrates by the sol-gel method. The influence of annealing temperature on the structural, optical and magnetic properties was studied by X-ray diffraction (XRD), atom force microscopy (AFM), photoluminescence (PL) and SQUID magnetometer (MPMS, Quantum Design). The XRD spectrum shows that all the films are single crystalline with (0 0 2) preferential orientation along c-axis, indicating there are not any secondary phases. The atomic force microscopy images show the surfaces morphologies change greatly with an increase in annealing temperature. PL spectra reveal that the films marginally shift the near band-edge (NBE) position due to stress. The magnetic measurements of the films using SQUID clearly indicate the room temperature ferromagnetic behavior, and the Curie temperature of the samples is above room temperature. X-ray photoelectron spectroscopy (XPS) patterns suggest that Mn2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO host. It is also found that the post-annealing treatment can affect the ferromagnetic behavior of the films effectively.  相似文献   

14.
Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180–420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

15.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

16.
陈华  汪力 《中国物理快报》2009,26(5):117-120
Application of terahertz time-domain spectroscopy is demonstrated to study the process of Ag2O thermal decomposition. In the process of decomposition, the time-resolved signals are characterized by broad oscillations and decreased intensity, and Tttz pulse essentially contains two broad spectral components: one centered at around 0.35 THz and a band with a maximum at around 0.81 THz shift to 0.71 THz. Optical absorption spectra of different specimens are studied in the frequency range 0.3-1.4 THz and the data are analyzed by the relevant theory of the effective medium approach combined with the Drude-Lorentz model. The analysis suggests that optical properties stem from the Drude term for the metallic phase and the Lorentz term for the insulator phase in the complex system.  相似文献   

17.
We study the structural defects in the SiO, film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3]^2- defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3]^2- is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000℃ annealing, [-SiO3]^2- defects still exist in the films.  相似文献   

18.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

19.
Nitrogen doping of silver oxide(AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity.In this work,a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios(FRs) of nitrogen to O2.Evolutions of the structure,the reflectivity,and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry,respectively.The specular transmissivity and the specular reflectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film.The nitrogen does not play the role of an acceptor dopant in the film deposition.  相似文献   

20.
An a-SiNx/nanocrystalline silicon [(nc-Si)/a-SiNx] sandwiched structure is fabricated in a plasma enhanced chemical vapour deposition (PECVD) system at low temperature (250℃). The nc-Si layer is fabricated from a hydrogen-diluted silane mixture gas by using a layer-by-layer deposition technique. Atom force microscopy measurement shows that the density of nc-Si is about 2 ×10^11 cm^-2. By the pretreatment of plasma nitridation, low density of interface states and high-quality interface between the Si substrate and a-SiNs insulator layer are obtained. The density of interface state at the midgap is calculated to be 1 ×10^10 cm^-2eV^-1 from the quasistatic and high frequency C - V data. The charging and discharging property of nc-Si quantum dots is studied by capacitance-voltage (C- V) measurement at room temperature. An ultra-large hysteresis is observed in the C - V characteristics, which is attributed to storage of the electrons and holes into the nc-Si dots. The long-term charge-loss process is studied and ascribed to low density of interface states at SiNx/Si substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号