首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni/Au Schottky contacts on A1N/GaN and A1GaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an A1GaN/GaN diode by self-consistently solving Schrodinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostrncture results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an A1GaN/GaN diode.  相似文献   

2.
High electronic density is achieved by polarization doping without an impurity dopant in graded AIGaN films. Low specific contact resistance is studied on the polarization-doped A1GaN/GaN heterojunctions by using the transmission line method (TLM). The sheet density of polarization-doped A1GaN/GaN heterojunction is 6 × 10 14 cm-2 at room temperature. The linearly graded material structure is demonstrated by X-ray diffraction. The cartier concentration and mobility are characterized by a temperature-dependent Hall measurement. Multiple-layer metal (Ti/A1/Ti/Au) is deposited and annealed at 650 ℃ to realize the Ohmic contacts on the graded A1GaN/GaN heterojunctions.  相似文献   

3.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

4.
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.  相似文献   

5.
Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity are analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the values of relative permittivity and polarization sheet charge density of AlN/GaN diode are both much smaller than the ones of AlGaN/GaN diode, and also much lower than the theoretical values. Moreover, by fitting the measured forward 1-V curves, the extracted dislocations existing in the barrier layer of the AlN/GaN diode are found to be much more than those of the AlGaN/GaN diode. As a result, the conclusion can be made that compared with AlGaN/GaN diode the Schottky metal has an enhanced influence on the strain of the extremely thinner AlN barrier layer, which is attributed to the more dislocations.  相似文献   

6.
We study the effect of decoherence on quantum Monty Hall problem under the influence of amplitude damping, depolarizing, and dephasing channels. It is shown that under the effect of decoherence, there is a Nash equilibrium of the game in case of depolarizing channel for Alice's quantum strategy. Whereas in case of dephasing noise, the game is not influenced by the quantum channel. For amplitude damping channel, Bob's payoffs are found symmetrical about a decoherence of 50% and the maximum occurs at this value of decoherence for his classical strategy. However, it is worth-mentioning that in case of depolarizing channel, Bob's classical strategy remains always dominant against any choice of Alice's strategy.  相似文献   

7.
An A1GaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentration in the GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. A significant increase of the full width at the half maximum of the (002) rocking curves when the doping concentration reaches 2.5 × 10^19 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the A1GaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.  相似文献   

8.
In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the A1GaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of Ⅰ-Ⅴ, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer A1GaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-p-m wide (Such an A1GaN/GaN HEMT is denoted as A1GaN/GaN HEMT (10 × 125 μm)). The improved large signal model simulates the Ⅰ-Ⅴ characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

9.
汤岑  谢刚  张丽  郭清  汪涛  盛况 《中国物理 B》2013,(10):406-411
A novel structure of AIGaN/GaN Schottky barrier diode (SBD) featuring electric field optimization techniques of anode-connected-field-plate (AFP) and magnesium-doped p-type buried layer under the two-dimensional electron gas (2DEG) channel is proposed. In comparison with conventional A1GaN/GaN SBDs, the magnesium-doped p-type buried layer in the proposed structure can provide holes that can help to deplete the surface 2DEG. As a result, surface field strength around the electrode edges is significantly suppressed and the electric field along the channel is distributed more evenly. Through 2D numerical analysis, the AFP parameters (field plate length, LAFP, and field plate height, TAFP) and p-type buried layer parameters (p-type layer concentration, Np, and p-type layer thickness, Tp) are optimized to achieve a three-equal-peak surface channel field distribution under exact charge balance conditions. A novel structure with a total drift region length of 10.5 μm and a magnesium-doped p-type concentration of 1 × 10^17 cm 3 achieves a high breakdown voltage (VB) of 1.8 kV, showing 5 times improvement compared with the conventional SBD with the same device dimension.  相似文献   

10.
In this paper we study the bilayer quantum Hall (QH) effect on a noncommutative phase space (NCPS). By using perturbation theory, we calculate the energy spectrum, eigenfunction, Hall current, and Hall conductivity of the bilayer QH system, and express them in terms of noncommutative parameters θ and θ^-, respectively. In our calculation, we assume that these parameters vary from laver to laver.  相似文献   

11.
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.  相似文献   

12.
成志  周斌 《中国物理 B》2014,(3):498-503
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.  相似文献   

13.
P-A1GaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers. The simulation results show that efficiency droop is markedly improved due to two reasons: (i) enhanced hole concentration and hole carrier transport efficiency in A1GaN/GaN superlattices, and (ii) enhanced blocking of electron overflow between multiple quantum-wells and A1CaN/GaN superlattices.  相似文献   

14.
The effects of V/Ill growth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated. The surface morphology, crystalline quality, strain states, and density of basal stacking faults were found to depend heavily upon the V/III ratio. With decreasing V/III ratio, the surface morphology and crystal quality first improved and then deteriorated, and the density of the basal-plane stacking faults also first decreased and then increased. The optimal V/III ratio growth condition for the best surface morphology and crystalline quality and the smallest basal-plane stacking fault density of a-GaN films are found. We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   

15.
The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to soin-orbit dependent impurity scatterings.  相似文献   

16.
The advantages of a GaN-AlGaN-InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombi- nation rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN-AlGaN-InGaN LQB, which enhances electron confinement and improves hole injection efficiency.  相似文献   

17.
In this work, the breakdown characteristics of AlGaN/GaN planar Schottky barrier diodes (SBDs) fabricated on the silicon substrate are investigated. The breakdown voltage (BV) of the SBDs first increases as a function of the anodeto-cathode distance and then tends to saturate at larger inter-electrode spacing. The saturation behavior of the BV is likely caused by the vertical breakdown through the intrinsic GaN buffer layer on silicon, which is supported by the post-breakdown primary leakage path analysis with the emission microscopy. Surface passivation and field plate termination are found effective to suppress the leakage current and enhance the BV of the SBDs. A high BV of 601 V is obtained with a low on-resistance of 3.15 mΩ·cm^2.  相似文献   

18.
We examine the orbit-orbit interaction when a paraxial beamwith intrinsic orbital angular momentum (IOAM) reflects at an air-glass interface. The orbital-dependent splitting of the beam intensity distribution arises due to the interaction between IOAM and extrinsic orbital angular momentum (EOAM). In addition, we find that the beam centroid shows an orbital-dependent rotation when seen along the propagation axis. However, the motion of the beam centroid related to the orbit-orbit interaction undergoes a straight line trajectory with a small angle inclining from the propagation axis. Similar to a previously developed spin-dependent splitting in the photonic spin Hall effect, the orbital-dependent splitting could lead to the photonic orbital Hall effect.  相似文献   

19.
Step-stress experiments are performed in this paper to investigate the degradation mechanism of an AIGaN/GaN high electron mobility transistor (HEMT). It is found that the stress current shows a recoverable decrease during each voltage step and there is a critical voltage beyond which the stress current starts to increase sharply in our experiments. We postulate that defects may be randomly induced within the A1GaN barrier by the high electric field during each voltage step. But once the critical voltage is reached, the trap concentration will increase sharply due to the inverse piezoelectric effect. A leakage path may be introduced by excessive defect, and this may result in the permanent degradation of the A1GaN/GaN HEMT.  相似文献   

20.
The quality of an A1GaN channel heterojunction on a sapphire substrate is massively improved by using an A1- GaN/GaN composite buffer layer. We demonstrate an A10.4Gao.6N/AI0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V.s) and a sheet resistance of 890Ω/口 under room temperature. The crystalline quality and the electrical properties of the A1GaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance-voltage (C-V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号