首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
射频等离子体辅助MBE生长GaN及Mg掺杂的光致发光   总被引:1,自引:1,他引:0       下载免费PDF全文
采用射频等离子体辅助分子束外延(RF plasma-assisted MBE)系统生长非故意掺杂GaN和p型GaN,并且通过室温和低温光致发光(PL)谱测试研究了材料的发光特性及与杂质态的关系,对于GaN外延层出现的黄带发光进行分析。结果表明,富Ga条件下生长的GaN材料特性要优于富N生长的材料;非故意掺杂的富Ga样品中出现的黄带发光(YL)与GaN中生成能最低的氮空位(VN)缺陷有关;不同的Mg掺杂浓度对样品的PL特性有较大的影响;结合Hall效应测量结果,认为在Mg重掺杂的样品中出现的黄带发光,与GaN的自补偿效应以及重掺杂导致的晶体质量下降有关。  相似文献   

2.
For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar+ ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 1013 ions/cm2 to 1 × 1018 ions/cm2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N2+ ions and 7.2 × 1017 ions/cm2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar+ ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.  相似文献   

3.
Jian-Kai Xu 《中国物理 B》2021,30(11):118101-118101
The effect of nitrogen flow and growth temperature on extension of GaN on Si substrate has been studied. By increasing the nitrogen flow whose outlet is located in the center of the MOCVD (metal-organic chemical vapor deposition) gas/particle screening flange and by increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer, the GaN layer has extended more adequately on Si substrate. In the meantime, the surface morphology has been greatly improved. Both the AlN and GaN crystal quality uniformity has been improved. X-ray diffraction results showed that the GaN (0002) XRD FWHMs (full width at half maximum) decreased from 579 arcsec~ 1655 arcsec to around 420 arcsec.  相似文献   

4.
This paper presents the investigation of the properties of GaN nanowires synthesized from Ni-catalyzed chemical vapour deposition method under various growth temperatures. The influence of the growth temperatures on the morphological, structural and optical characteristics of the synthesized GaN nanowires was investigated in this work. Field-emission scanning electron microscopy images revealed that the 950 °C was the optimal growth temperature for synthesizing uniform, straight and smooth morphology of GaN nanowires. X-ray diffraction results demonstrated that the synthesized low dimensional GaN structures have the hexagonal wurtzite structure. Ultraviolet and blue emissions were detected from photoluminescence measurements. In addition, phonon replicas with the energy separation of 90 meV have been observed at the lower energy of the blue emission region in photoluminescence spectra.  相似文献   

5.
氢化物气相外延生长高质量GaN膜生长参数优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张李骊  刘战辉  修向前  张荣  谢自力 《物理学报》2013,62(20):208101-208101
系统研究了低温成核层生长时间、高温生长时的V/Ⅲ 比以及生长温度对氢化物气相外延生长GaN膜晶体质量的影响. 研究发现合适的低温成核层为后续高温生长提供成核中心, 并能有效降低外延膜与衬底间的界面自由能, 促进成核岛的横向生长; 优化的V/Ⅲ比和最佳生长温度有利于降低晶体缺陷密度, 促进横向生长, 增强外延膜的二维生长. 利用扫描电子显微镜、原子力显微镜、高分辨X射线衍射、 低温光致发光谱和室温拉曼光谱对优化条件下生长的GaN外延膜进行了结构和光电特性表征. 测试结果表明, 膜表面平整光滑, 呈现二维生长模式表面形貌; (002)和(102)面摇摆曲线半高宽分别为317和343 arcsec; 低温光致发光谱中近带边发射峰为3.478 eV附近的中性施主束缚激子发射峰, 存在11 meV的蓝移, 半高宽为10 meV, 并且黄带发光强度很弱;常温拉曼光谱中E2 (high) 峰发生1.1 cm-1蓝移.结果表明, 优化条件下生长的GaN外延膜具有良好的晶体质量和光电特性, 但GaN 膜中存在压应力. 关键词: 氮化镓 氢化物气相外延 低温成核层  相似文献   

6.
侧向外延法生长的高质量GaN及其外延缺陷的观察   总被引:1,自引:1,他引:0  
在有条状SiO2图形的GaN“模板”上,侧向外延方法生长了高质量的GaN。荧光显微镜的结果表明在SiO2掩膜区有成核过程发生。原因可能是SiO2的质量不高,为GaN的生长提供了一些成核中心。在GaN层的厚度达到4.5μm后,侧向的融合开始发生。侧向生长的速度与垂直生长速度几乎相同。在所有的SiO:掩膜上方都形成了空洞。样品在240℃熔融的KOH中腐蚀13min。在SiO2掩膜区生长的GaN,其腐蚀坑密度(相当于穿透位错密度)减少到几乎为零。而在窗口区生长的GaN,腐蚀坑密度仍然很高,达到10^8cm^-2量级。同时,我们发现具有不同窗口尺寸的样品在SiO2掩膜区上侧向生长的CaN的晶体质量基本相同,与窗口区的宽度几乎无关。室温光荧光结果表明侧向外延法生长的CaN中的晶格失配应力已被部分释放。  相似文献   

7.
Undoped GaN epilayers were grown on c-plane sapphire substrates under different growth temperatures by metalorganic chemical vapour deposition (MOCVD). The optical and structural characteristics of these grown samples were studied and compared. It was found that the crystalline quality of GaN film deposited at 1050°C was better that of other samples. Photoluminescence spectra showed that the intensities of yellow luminescence band of the samples decreased as the growth temperature increased. All above test results demonstrate that high temperature deposition can serve as a good method for high-quality GaN epilayer growth and there exists an optimal growth temperature.  相似文献   

8.
The SiGe film was deposited at a low temperature of 675-725 °C with various dielectric mask patterns and process conditions using reduced pressure chemical vapor deposition. Pattern shape and process conditions associated with the growth rate and the Ge composition of the selective epitaxial growth (SEG) have been examined for the SiH4-GeH4-H2 system. The objective was to understand the effect of pattern size at low temperature for the feasible device applications. The growth rates showed large non-uniformity of 1.4 depending upon the window width, 2-100 μm, of dielectric mask patterns. From the influence of the pattern shape/size and process parameters, the evolution of growth rates could be explained by the surface migration and the surface topology as well. After the surface migration control appearing dominantly at the initial stage, the surface topology became significant at the last part of the SEG process. The Ge composition is important to form the high quality SEG of SiGe films, so that it is important to optimize the flow rate of SiH4, GeH4, and total source gas.  相似文献   

9.
The initial stages and subsequent growth of GaN on sapphire using ZnO buffer layers is reported for the hydride vapor phase epitaxy technique. A high gas-phase supersaturation in the growth ambient was used to favor a rapid initial growth on the substrate. A subsequent growth step was employed under conditions that favor a high lateral growth rate in order to promote the coalescence of the initial islands and provide optimal material properties. The specific gas-phase mole fractions of the GaCl and NH3 at the growth front control both the vertical and lateral growth rates. The use of a two-step growth process in the GaN growth leads to a controlled morphology and improved material properties for GaN materials when grown with a ZnO buffer layer. An optimized set of growth conditions, utilizing this two-step process, was found to also improve the growth directly on sapphire without a ZnO buffer layer. Received: 8 November 2001 / Accepted: 14 November 2001 / Published online: 11 February 2002  相似文献   

10.
Until recently, molecular beam epitaxy (MBE) has been behind metalorganic chemical vapor deposition (MOCVD) as a growth technique for III-nitride thin films, due to the lack of nitrogen source powerful enough for the growth in vacuum and the understanding of growth mechanism. We have clarified that the quality of GaN epilayers on sapphire substrates grown by N2 plasma-assisted MBE can be much improved by realizing Ga-polarity growth mode, which enables us to fabricate HFETs using the MBE-grown AIGaN/GaN 2DEG structures. The Ga-polarity growth mode was found to be achieved by Al high temperature buffer process, In flux exposure etc., and directly confirmed by coaxial impact collision ion scattering spectroscopy (CAICISS) technique. The relation between the surface reconstruction structure of GaN epilayers and the lattice polarity of the epilayers is also shown.  相似文献   

11.
Detailed measurements have been made of the specular beam intensity in RHEED patterns from static and growing GaAs surfaces. The basic parameters investigated were substrate temperature and electron beam azimuth. The results have provided further understanding of growth dynamics and surface disorder, respectively. There is a significant trend away from two-dimensional growth at the higher temperatures, which also correspond to more Ga-rich surface structures. Conversely, surface disorder is apparently greater during growth at the lower temperatures, where the structure is As-rich. The static As-stable 2×4 surface is, however, the most ordered and the most closely two-dimensional. It has also been shown that ordered, two-dimensional growth can be initiated from excess Ga adatom populations.  相似文献   

12.
Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained.  相似文献   

13.
In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25?500?cm(2)?V (-1)?s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.  相似文献   

14.
GaN films were grown on ZnO substrate under various beam equivalent pressure ratios by plasma-assisted molecular beam epitaxy (P-MBE). We theoretically calculated the thermal stress caused by the difference of thermal expansion coefficients between GaN and ZnO. The changes of stress and critical thickness were evaluated by measurement of XRD for HT GaN and LT GaN buffer grown under Ga-rich and N-rich conditions. From this study, we observed that GaN grown under Ga-rich condition causes GaN film to under compressive-stress, while GaN grown under N-rich condition was tensile-stressed. Consequently, interdiffusion has no effect on the variation of the critical thickness.  相似文献   

15.
Non-polar a-plane (110) GaN films have been grown on r-plane (102) sapphire substrates by metal organic chemical vapour deposition. The influences of Ⅴ/Ⅲ ratio on the species diffusion anisotropy of a-plane GaN films were investigated by scanning electron microscopy, cathodoluminescence and high-resolution x-ray diffraction measurements. The anisotropy of a-plane GaN films may result from the different migration length of adatoms along two in-plane directions. Ⅴ/Ⅲ ratio has an effect on the growth rates of different facets and crystal quality. The stripe feature morphology was obviously observed in the film with a high V/III ratio because of the slow growth rate along the [100] direction. When the Ⅴ/Ⅲ ratio increased from 1000 to 6000, the in-plane crystal quality anisotropy was decreased due to the weakened predominance in migration length of gallium adatoms.  相似文献   

16.
CVD法制备硅基氮化镓薄膜   总被引:1,自引:1,他引:0  
利用化学气相沉积法(CVD),分别以三氧化二镓(Ga2O3)和氨气(NH3)为镓源和氮源在硅衬底合成了一种由片状微晶构成的氮化镓(GaN)薄膜,实验中没有使用缓冲层。通过场发射扫描电子显微镜(FESEM)、电子能量散射谱(EDS)、X射线衍射(XRD)、高分辨电镜(HRTEM)和光致发光谱(PL)对样品进行分析,生成物为质量较好的富镓的纯氮化镓薄膜。片状氮化镓微晶表面大小约数百纳米,厚度数十纳米,薄膜表面平整、致密,没有裂纹或龟裂现象,与Si衬底结合紧密。氮化镓薄膜的带边峰位于367nm处,同时出现了黄光发射峰。并对此种氮化镓薄膜的生长机理进行了探讨。  相似文献   

17.
国产SiC衬底上利用AIN缓冲层生长高质量GaN外延薄膜   总被引:6,自引:6,他引:0       下载免费PDF全文
采用高温AlN作为缓冲层在国产SiC衬底上利用金属有机物化学气相外延技术生长GaN外延薄膜.通过优化AlN缓冲层的生长参数得到了高质量的GaN外延薄膜,其对称(0002)面和非对称(1012)面X射线衍射摇摆曲线的半峰宽分别达到130 arcsec和252 arcsec,这是目前报道的在国产SiC衬底上生长GaN最好的...  相似文献   

18.
利用MOCVD技术在图形化Si(111)衬底上生长了InGaN/GaN绿光LED外延材料。在GaN量子垒的生长过程中,保持NH3流量不变,通过调节三乙基镓(TEGa)源的流量来改变垒生长速率,研究了量子垒生长速率对LED性能的影响。使用二次离子质谱仪(SIMS)和荧光显微镜(FLM)分别对量子阱的阱垒界面及晶体质量进行了表征,使用电致发光测试系统对LED光电性能进行了表征。实验结果表明,垒慢速生长,在整个测试电流密度范围内,外量子效率(EQE)明显提升。我们认为,小电流密度下,EQE的提升归结为量子阱晶体质量的改善;而大电流密度下,EQE的提升则归结为阱垒界面陡峭程度的提升。  相似文献   

19.
The effects of growth parameters such as barrier growth time, growth pressure and indium flow rate on the properties of InGaN/GaN multiple quantum wells (MQWs) were investigated by using photoluminescence (PL), high resolution X-ray diffraction (HRXRD), and atomic force microscope (AFM). The InGaN/GaN MQW structures were grown on c-plane sapphire substrate by using metalorganic chemical vapor deposition. With increasing barrier growth time, the PL peak energy is blue-shifted by 18 nm. For InGaN/GaN MQW structures grown at different growth pressures, the PL intensity is maximized in the 300 Torr – grown structure, which could be attributed to the improved structural quality confirmed by HRXRD and AFM results. Also, the optical properties of InGaN/GaN MQW are strongly affected by the indium flow rate.  相似文献   

20.
本文通过对4H-SiC同质外延化学反应和生长条件的分析,建立了4H-SiC同质外延生长的Grove模型,并结合实验结果进行了分析和验证.通过理论分析和实验验证,得到了外延中氢气载气流量和生长温度对4H-SiC同质外延生长速率的影响.研究表明:外延生长速率在衬底直径上为碗型分布,中心的生长速率略低于边缘的生长速率;随着载气流量的增大,生长速率由输运控制转变为反应速率控制,生长速率先增大而后逐渐降低;载气流量的增加,会使高温区会发生漂移,生长速率的理论值和实验出现一定的偏移;随着外延生长温度的升高,化学反应速率和气相转移系数都会增大,提高了外延速率;温度对外延反应速率的影响远大于对生长质量输运的影响,当温度过分升高后,外延生长会进入质量控制区;但过高的生长温度导致源气体在生长区边缘发生反应,生成固体粒子,使实际参与外延生长的粒子数减少,降低了生长速率,且固体粒子会有一定的概率落在外延层上,严重影响外延层的质量.通过调节氢气流量,衬底旋转速度和生长温度,可以有效的控制外延的生长速度和厚度的均匀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号