首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical characteristics of W/4H-SiC Schottky contacts formed at different annealing temperatures have been measured by using current-voltage-temperatures(I-V -T) and capacitance-voltage-temperatures(C-V -T) techniques in the temperature range of 25℃-175℃. The testing temperature dependence of the barrier height(BH) and ideality factor(n) indicates the presence of inhomogeneous barrier. Tung's model has been applied to evaluate the degree of inhomogeneity, and it is found that the 400℃ annealed sample has the lowest T0 of 44.6 K among all the Schottky contacts. The barrier height obtained from C-V -T measurement is independent of the testing temperature, which suggests a uniform BH.The x-ray diffraction(XRD) analysis shows that there are two kinds of space groups of W when it is deposited or annealed at lower temperature(≤500℃). The phase of W_2C appears in the sample annealed at 600℃, which results in the low BH and the high T_0. The 500℃ annealed sample has the highest BH at all testing temperatures, indicating an optimal annealing temperature for the W/4H-SiC Schottky rectifier for high-temperature application.  相似文献   

2.
Al0.2 Ga0.8N/GaN samples are grown by metalorganic chemical vapour deposition (MOCVD) method on (0001) sapphire substrates. A 10nm-thick Ni layer is deposited on AlGaN as the transparent Schottky contact. The effect of postannealing in oxygen ambient on the electrical properties of Ni/AlGaN is studied by current-voltage- temperature (I-V-T) measurement. The annealing at a relatively low temperature of 300℃ for 90 s results in a decrease of the ideality factor from 2.03 to 1.30 and an increase of the Schottky barrier height from 0.77eV to 0.954 e V. The I-V-T analysis confirms the improvement originated from the formation of NiO, a layer with higher resistance, which could passivate the surface states of AlGaN and suppress the tunnelling current. Furthermore, the annealing also leads to an increase of the transmittance of the contacts from 57.5% to 78.2%, which would be favourable for A1GaN-based photodetectors.  相似文献   

3.
The current transport parameters of 4H-SiC merged PiN Schottky(MPS) diode are investigated in a temperature range of 300-520 K.Evaluation of the experimental current-voltage(I-V) data reveals the decrease in Schottky barrier height Φ b but an increase in ideality factor n,with temperature decreasing,which suggests the presence of an inhomogeneous Schottky barrier.The current transport behaviours are analysed in detail using the Tung’s model and the effective area of the low barrier patches is extracted.It is found that small low barrier patches,making only 4.3% of the total contact,may significantly influence the device electrical characteristics due to the fact that a barrier height of 0.968 eV is much lower than the average barrier height 1.39 eV.This shows that ion implantation in the Schottky contact region of MPS structure may result in a poor Ti/4H-SiC interface quality.In addition,the temperature dependence of the specific on-resistance(R on sp),T 2.14,is determined between 300 K and 520 K,which is similar to that predicted by a reduction in electron mobility.  相似文献   

4.
This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the A1/Ti/4H-SiC interface. The effective Richardson constant A* = 154 A/cm2 . K2 is determined by means of a modified Richardson plot In(I0/T2) - (qσ)2/2(κT)2 versus q/kT, which is very close to the theoretical value 146 A/cm2 · K2.  相似文献   

5.
Au/Ni/n-type 4H–SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500?C, the two nickel silicides(i.e., Ni_(31)Si_(12) and Ni_2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature,the Ni_(31)Si_(12) transforms into the more stable Ni_2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600℃. As a result, the Au/Ni/n-type 4 H–SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.  相似文献   

6.
We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit voltage (Voc) increases from 0.54 V to 0.56 V, 0.71 V and 0.82 eV while decreases to 0.69 eV after annealing at 100 ℃, 130 ℃, 160 ℃, and 200 ℃, respectively, which can be ascribed to the change of barrier height of PEDOT:PSS/GaN Schottky contact induced by variation of the work function of the PEDOT:PSS. Furthermore, the conductivity and surface roughness measurements of the PEDOT:PSS indicate that annealing can increase the grain size and improve the connectivity between PEDOT and PSS particles, and cause thermal degradation at the same time, which leads to the rise in short-circuit current density (ISC) up to 160 ℃ and the dropoff in ISC after annealing at 200 ℃.  相似文献   

7.
The current-voltage characteristics of Ti/n-GaAs Schottky diodes measured over a temperature range of 78-299K have been interpreted on the basis of thermionic emission across an inhomogeneous Schottky contact.The experiment shows that the apparent barrier height (φap) increases from 0.437eV at 78K to 0.698eV at room temperature.the plot of φap versus 1/T does not exhibit a simple linear relationship over the whole temperature range,indicating that the barrier height distribution is more complicated than the frequently observed single Gaussian distribution.A new multi-Gaussian distribution model is developed.Our experimental results can be explained by a double Gaussian distribution of the barrier heights.The weight,the mean barrier height,and the standard deviation of the two Gaussian functions are 0.00001 and 0.99999,0.721 and 0.696,0.069 and 0.012eV,respectively.  相似文献   

8.
李菲  张小玲  段毅  谢雪松  吕长志 《中国物理 B》2009,18(11):5029-5033
Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I--V--T measurements ranging from 300 to 523~K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density.  相似文献   

9.
The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors(HEMTs) is investigated by temperature-dependent current–voltage(T –I–V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission(TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method,considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I–V characteristics, giving a value of 1.49 × 107cm-2.  相似文献   

10.
The 3C-SiC thin films used herein are grown on Si substrates by chemical vapor deposition. A1 contacts with differ- ent thickness values are deposited on the 3C-SiC/Si (100) structure by the magnetron sputtering method and are annealed at different temperatures. We focus on the effects of the annealing temperature on the ohmic contact properties and mi- crostructure of A1/3C-SiC structure. The electrical properties of A1 contacts to n-type 3C-SiC are characterized by the transmission line method. The crystal structures and chemical phases of A1 contacts are examined by X-ray diffraction, Raman spectra, and transmission electron microscopy, respectively. It is found that the A1 contacts exhibit ohmic contact behaviors when the annealing temperature is below 550 ℃, and they become Schottky contacts when the annealing tem- perature is above 650 ℃. A minimum specific contact resistance of 1.8 × 10-4 Ω cm2 is obtained when the A1 contact is annealed at 250 ℃.  相似文献   

11.
On the basis of the Schottky barrier and thermionic emission models, the temperature dependence of barrier height in ZnO varistors is investigated by the I - V characteristics in a wide temperature range from 93 K to 373 K. The obtained barrier height decreases with reducing temperature, which is ascribed to the contribution of tunneling current in measured current. From the proposed equivalent circuit, it is suggested that two current components coexist. One is thermionic emission current, which reflects the thermionic emission barrier height. The other is tunneling current, which appears even at low voltage, especially in low temperature ranges, and thus makes the barrier height obtained from measured current vary with temperature.  相似文献   

12.
茹国平  俞融  蒋玉龙  阮刚 《中国物理 B》2010,19(9):97304-097304
This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I--V--T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height Ф. With proper scheme of series resistance connection where the condition of Vj > Ф is guaranteed, I--V--T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I--V--T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I--V--T curves only for small barrier height inhomogeneity.  相似文献   

13.
<正>A Au/Bi4Ti3O12/n-Si structure is fabricated in order to investigate its current-voltage(I-V) characteristics in a temperature range of 300 K-400 K.Obtained I-V data are evaluated by the thermionic emission(TE) theory.Zero-bias barrier height(ΦB0) and ideality factor(n) calculated from I-V characteristics,are found to be temperature-dependent such thatΦB0 increases with temperature increasing,whereas n decreases.The obtained temperature dependence ofΦB0 and linearity inΦB0 versus the n plot,together with a lower barrier height and Richardson constant values obtained from the Richardson plot,indicate that the barrier height of the structure is inhomogeneous in nature.Therefore,I-V characteristics are explained on the basis of Gaussian distribution of barrier height.  相似文献   

14.
The Pt/Si/Ta/Ti multilayer metal contacts on 4H–Si C are annealed in Ar atmosphere at 600°C–1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current–voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process.  相似文献   

15.
The current-voltage characteristics of 4H-SiC junction barrier Schottky(JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300 C.An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature.A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown.Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time.Finally,a discussion of reducing the reverse recovery time is presented.  相似文献   

16.
Ni/Au Schottky contacts on A1N/GaN and A1GaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an A1GaN/GaN diode by self-consistently solving Schrodinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostrncture results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an A1GaN/GaN diode.  相似文献   

17.
Ni Schottky contacts on AlGaN/GaN heterostructures have been fabricated. The samples are then thermally treated in a furnace with N2 ambient at 600 circC for different times (0.5, 4.5, 10.5, 18, 33, 48 and 72 h). Current-voltage (I-V) and capacitance-voltage (C-V) relationships are measured, and Schrödinger's and Poisson's equations are self-consistently solved to obtain the characteristic parameters related to AlGaN/GaN heterostructure Schottky contacts: the two-dimensional electron gas (2DEG) sheet density, the polarization sheet charge density, the 2DEG distribution in the triangle quantum well and the Schottky barrier height for each thermal stressing time. Most of the above parameters reduce with the increase of stressing time, only the parameter of the average distance of the 2DEG from the AlGaN/GaN interface increases with the increase of thermal stressing time. The changes of the characteristic parameters can be divided into two stages. In the first stage the strain in the AlGaN barrier layer is present. In this stage the characteristic parameters change rapidly compared with those in the second stage in which the AlGaN barrier layer is relaxed and no strain is present.  相似文献   

18.
The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300 ℃. An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature. A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown. Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time. Finally, a discussion of reducing the reverse recovery time is presented.  相似文献   

19.
Electrical characteristics of Co/n-Si Schottky barrier diodes are analysed by current- voltage (I- V) and capacitancevoltage (C- V) techniques at room temperature. The electronic parameters such as ideality factor, barrier height and average series resistance are determined. The barrier height 0. 76 eV obtained from the C - V measurements is higher than that of the value 0. 70 eV obtained from the I - V measurements. The series resistance Rs and the ideality factor n are determined from the d ln( I) /dV plot and are found to be 193.62 Ω and 1.34, respectively. The barrier height and the Rs value are calculated from the H(I) - I plot and are found to be 0.71 eV and 205.95Ω. Furthermore, the energy distribution of the interface state density is determined from the forward bias I - V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density Nss ranges from 6.484×10^11 cm^-2eV^-1 in (Ec - 0.446) eV to 2.801×10^10 cm^-2eV^-1 in (Ec - 0.631) eV, of the Co/n-Si Schottky barrier diode. The results show the presence of a thin interracial layer between the metal and the semiconductor.  相似文献   

20.
We fabricate two Ni/Au-In0.17 Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage mea- surements. In the temperature range of 300-485K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I V characteristics using different current transport models, we find that the tunneling current model can describe generally the I V 5ehaviors in the entire measured range of temperature. Under the, high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au-InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号