首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
乌克兰哈尔科夫物理技术研究所(KIPT)在建的100 MeV电子直线加速器,束流功率高达100kW,给拦截式条带靶束流截面探测器的电极选材带来巨大的困难。通过ANSYS有限元分析程序对探头与束流的相互作用进行模拟,得到了探头材料在1.2kW束流功率条件下的真空温升和受力、变形结果;通过初步的束流实验,观测了T300碳纤维束在束流作用下的信号情况,最终锁定用T300碳纤维束作为电极材料。这是国际上首次采用碳纤维束作为靶面电极。  相似文献   

2.
We designed a 100 MeV/100 kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the basis of subcritical assembly. Beam dynamics studies have been conducted to reach the design requirements (E=100 MeV, P=100 kW, dE/E<1% for 99% particles). In this paper, we will present the progress of the design and the dynamic simulation results. For high intensity and long beam pulse linear accelerators, the BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at a low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced downstream of the 1st accelerating section; the unwanted particles will be collimated there.  相似文献   

3.
Research and development of a 1.3 GHz 9-cell cavity test cryomodule were carried out by a collaboration group between IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) in China.The cryomodule is a "test model" for the ILC cryomodule,and a key component of a superconducting accelerator test unit which will be built in the near future,also can be used as a horizontal test facility for 1.3 GHz 9-cell cavities.This paper presents the development status of the cryomodule,including structure design,cryogenic flow diagram,thermal and mechanical simulations,heat load estimation and etc.  相似文献   

4.
ADS注入器Ⅰ高频四极场(RFQ)功率源系统将为325MHz RFQ提供连续波功率,使束流离开RFQ时,其能量达到几MeV。功率源系统除了补偿RFQ腔耗外,还必须提供足够的功率以保证RFQ中的加速电场。ADS注入器ⅠRFQ功率源系统主要包括600kW连续波速调管、80kV/18A基于脉冲步进调制技术的PSM电源、环流器以及相应的波导传输系统等。根据ADS总体指标和RFQ的相关技术参数,提出了功率源的总体布局、技术指标以及设计要求等,在此基础上完成系统安装与调试,并通过专家组测试与验收。  相似文献   

5.
Dragon-Ⅰ is a linear induction electron accelerator. This facility consists in a 3.6MeV injector, 38 meter beam transport line and 16MeV induction accelerator powered by high voltage generators, including 8 Marx generators and 48 Blumlein lines. This paper describes the physics design, development and experimental results of Dragon- Ⅰ. The key technology is analyzed in the accelerator development, and the design requirements and operation of the major subsystems are presented. The experimental results show Dragon-Ⅰ generates an 18—20MeV, 2.5kA, 70ns electron beam. The X-ray spot size is about 1.2mm and dose level about 0.103 C/kg at 1 meter.  相似文献   

6.
强流质子源与低能传输线(LEBT)是作为CIADS注入器的超导强流质子直线加速器的关键前端系统。目前LEBT采用双螺线管匹配结构设计,并安装有限制锥,但仍然不能避免少量H2+和H3+进入后端加速装置,这对直线加速器长期运行稳定性与可靠性会产生一定影响。为此,在LEBT加入分析磁铁对混合束(H+,H+2,H3+)进行分离再注入后端加速器腔体,将是一个有效的方案。本研究对经过带有30度分析磁铁的LEBT的强流质子束的束流品质进行了模拟与实验测量。结果表明,分析磁铁高阶磁场的影响使经过分析磁铁的强流质子束束流品质变差,并且该影响随着束流包络的增大而增大。这些结果为CIADS注入器的低能传输线设计提供了参考依据。High current proton source and the low energy beam transport(LEBT) are the key front-end systems for CIADS injector:high current proton linac accelerator. CIADS injector's LEBT adopts double solenoid matching structure, using a limit cone which can partially avoid H2+ and H3+ which injecting into the back-end linac accelerator may impact the long-term stability and reliability of the whole system. It will be an effective method to separate the hybrid ions (H+, H2+, H3+) by adding a dipole magnet at LEBT. In this article, we simulated and mesasured the high current proton beam quality behind the LEBT with a 30 degree dipole. The results show that the the proton beam quality is significantly effected by high-order magnetic fields of the dipole magnet, and the effect increases with the increase of the beam envelope. The achieved result is useful for the LEBT design of CIADS injector.  相似文献   

7.
Research and development of a 1.3 GHz 9-cell cavity test cryomodule were carried out by a collaboration group between IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) in China. The cryomodule is a "test model" for the ILC cryomodule, and a key component of a superconducting accelerator test unit which will be built in the near future, also can be used as a horizontal test facility for 1.3~GHz 9-cell cavities. This paper presents the development status of the cryomodule, including structure design, cryogenic flow diagram, thermal and mechanical simulations, heat load estimation and etc.  相似文献   

8.
The China ADS(C-ADS) project proposes to build a 1000 MW Accelerator Driven sub-critical System around 2032. The accelerator will work in CW mode with 10 mA in beam current and 1.5 GeV in final beam energy. The linac is composed of two major sections: the injector section and the main linac section. There are two diferent schemes for the injector section. The Injector-scheme is based on a 325 MHz RFQ and superconducting spoke cavities of the same RF frequency and the Injector-scheme is based on a 162.5 MHz RFQ and superconducting HWR cavities of the same frequency. The main linac design will be diferent for diferent injector choices. The two diferent designs for the main linac have been studied according to the beam characteristics from the diferent injector schemes.  相似文献   

9.
A high resolution injector system has recently been installed at the Lund 3 MV tandem Pelletron accelerator. The new injector, designed mainly for 26Al ions, will increase the experimental potential of the Lund AMS facility considerably. High quality energy- and mass-resolution is obtained by using a 90° spherical electrostatic analyzer followed by a 90° magnetic analyzer. The injector is equipped with a high intensity sputtering source with a spherical ionizer. A new analytical technique for acceptance calculations as well as PC-based computational methods have been used in the design of the ion optical system of the new injector. Compared to our old injector system which has a magnetic analyzer with a bending angle of only 15°, the new system has a more than ten times better resolution. The beam optics of the new system is also better designed to match the accelerator acceptance. In this way the ion transmission from the ion source to the detector, for different ions of interest in our AMS programme, has been increased.  相似文献   

10.
IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.  相似文献   

11.
加速器驱动次临界系统注入器Ⅰ,包括ECR离子源、低能传输线、射频四极加速单元、中能传输段和超导腔,注入器Ⅰ出口能够获得能量10 MeV的强流质子束流。为了调束和运行的需要,注入器Ⅰ将安装束流位置测量、束流截面测量、束流流强测量、束流发射度和能量测量,以及束流损失测量等束流参数测量装置。介绍了这些束流测量系统设计及其他方面的一些考虑。  相似文献   

12.
Introduction to the overall physics design of CSNS accelerators   总被引:1,自引:0,他引:1  
The China Spallation Neutron Source (CSNS) is an accelerator-based facility. The  相似文献   

13.
The China Spallation Neutron Source (CSNS) is an accelerator-based facility. The accelerator of CSNS consists of a low energy linac, a Rapid Cycling Synchrotron (RCS) and two beam transport lines. The overall physics design of CSNS accelerator is described, including the design principle, the choice of the main parameters and design of each part of accelerators. The key problems of the physics design, such as beam loss and control, are also discussed. The interface between the different parts of accelerator, as well as between accelerator and target, are introduced.  相似文献   

14.
The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected as a driving accelerator for radioactive ion beam production. It will provide a proton beam of 75—100 MeV with an intensity of 200—500 μA. The scheme adopted in this design, i.e., stripping the accelerated H-, makes the structure more compact and construction cost much lower. At present, the design for each system has been accomplished. This paper depicts the basic physics design of the machine, including its major structure and parameters, beam dynamics and each relevant system, e.g. basic structure of the main magnet, numerical simulation of the RF resonant cavity, axial injection system, central region, and study on crucial physics problems concerning the extraction and beam lines. The major problems encountered during the design of CYCIAE-100 are also summarized in this paper.  相似文献   

15.
The China Spallation Neutron Source (CSNS) is a high intensity proton accelerator based facility. Its accelerator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV, with a repetition rate of 25 Hz. The AC dipole of the CSNS/RCS is operated at a 25 Hz sinusoidal alternating current which causes severe vibration. The vibration will influence the long-term safety and reliable operation of the magnet. The dipole magnet of CSNS/RCS is an active vibration equipment, which is different from the ground vibration accelerator. It is very important to design and study the dynamic characteristics of the dipole-girder system. This paper takes the AC dipole and girder as a specific model system. A method for studying the dynamic characteristics of the system is put forward by combining theoretical calculation with experimental testing. The ANSYS simulation method plays a very important role in the girder structure design stage. With this method, the mechanical resonance phenomenon was avoided in the girder design time. At the same time the dipole vibratory force will influence the other equipment through the girder. Since it is necessary to isolate and decrease the dipole vibration, a new isolator was designed to isolate the vibratory force and decrease the vibration amplitude of the magnet.  相似文献   

16.
It is proposed to construct a spallation neutron source (SNS) at Centre for Advanced Technology (CAT) based on a 1 GeV proton synchrotron with 100 MeV H LINAC as injector. Additionally, the LINAC can form the first 100 MeV part of a 1 GeV proton LINAC to be built in future for accelerator driven system (ADS) applications. We are exploring a configuration of the 100 MeV LINAC which will consist of an H ion source, a 4–6 MeV RFQ followed either by a 20 MeV drift tube LINAC (DTL) and 100 MeV separated function drift tube LINAC (SDTL) or a coupled cavity drift tube LINAC (CCDTL) structure. In this paper, we present the results of our preliminary physics design studies of the RFQ-SDTL, RFQ-CCDTL and RFQ-DTL-SDTL configurations. The design of the 4.5 MeV RFQ is discussed along with the matching sections between the RFQ-SDTL/DTL and RFQ-CCDTL. The choice of the accelerator configuration and that of various parameters of the individual accelerator structures under consideration are discussed. The design objectives are to arrive at a configuration which eases heat removal for CW operation and which is less prone to halo formation in order to reduce the beam loss at higher energies.  相似文献   

17.
A proposed compact ERL test facility at IHEP, Beijing, is presented in this paper, and includes the design parameters, the essential lattice, and the key components features, such as the photocathode DC gun and the CW superconducting accelerating structures. Some important beam physics issues such as the space charge effect, the coherent synchrotron radiation (CSR) effect and the beam break-up (BBU) effect are briefly described with the simulation results.  相似文献   

18.
“神龙一号”直线感应加速器物理设计   总被引:28,自引:16,他引:12       下载免费PDF全文
 介绍了 “神龙一号”直线感应加速器物理设计的主要考虑。“神龙一号”加速器是一台电子直线感应加速器,由3.6MeV感应迭加型注入器、72个感应加速腔、脉冲功率系统、束流输运和聚焦系统、控制系统和真空、绝缘油、绝缘气体以及去离子水系统组成。能产生20MeV、束流大于2.5kA,脉冲宽度为60ns的强流脉冲电子束,X光焦斑均方根直径为1.5mm。  相似文献   

19.
The design and the procedures for assembling and testing drift tubes 15 mm in diameter made of 125-µm-thick Mylar film with a double-sided aluminum coating are presented. The technology of assembling three-layer chambers made of such tubes with a length of up to 2.5 m intended for use in experiments at the accelerator facility at the Institute for High Energy Physics of the National Research Center Kurchatov Institute—IHEP is described. Some results obtained during detection of cosmic muon tracks in the chambers are presented.  相似文献   

20.
At the National Science Centre, Kharkiv Institute of Physics and Technology (NSC KIPT) the possibility of creating an installation with a subcritical reactor driven by an electron accelerator is examined. To obtain the maximal stream of neutrons from a neutron-producing target at a minimal density of energy emission, the electron energy should be in the range of 100–200 MeV and the size of the target should be as large as possible. Other important requirements are beam continuity with time and long-term stability of the accelerator parameters. The variants of using the superconducting linear accelerator on the basis of a TESLA accelerating structure as of subcritical reactor driver are considered. The basic design parameters and characteristics of this installation are presented. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号