首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用磁控溅射法,以镍硅合金为靶,制备了一种适用于金属诱导横向晶化的氧化物镍源——自缓释镍源.该镍源在内部构成和晶化现象上都不同于纯金属镍源.采用该镍源制备低温多晶硅材料,晶化速率不明显依赖于镍源薄膜的厚度,且晶化多晶硅膜内的残余镍量亦可有效降低,可为薄膜晶体管提供宽的工艺窗口.本文对用纯金属镍源所得多晶硅薄膜的晶化率、表面粗糙度、电学特性等与溅射条件的关系进行了研究,并对相应结果进行了讨论. 关键词: 自缓释 金属诱导横向晶化 多晶硅薄膜 低温制备与退火  相似文献   

2.
用无电电镀的化学方法,在VHF-PECVD沉积获得的非晶硅薄膜表面形成镍诱导源,在550℃下退火若干小时,可以诱导产生微米量级的多晶硅晶粒.用此法形成的镍源可以均匀地分布在非晶硅薄膜的表面.非晶硅薄膜上形成晶核的数量取决于镍溶液的浓度、pH值和无电电镀的时间等参量.当成核密度比较低时可以观察到径向晶化现象.用VHF-PECVD非晶硅薄膜作为晶化前驱物,晶化后多晶硅的最大晶粒尺寸可达到90μm.用此多晶硅试制的TFT,获得了良好的器件特性. 关键词: 金属诱导晶化 化学源 多晶硅 薄膜晶体管  相似文献   

3.
用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对以SiH4/H2及SiCl4/H2为源气体、采用等离子体增强化学气相沉积技术制备的非晶硅薄膜和多晶硅薄膜进行了光照稳定性的研究.实验表明,制备的多晶硅薄膜并没有出现非晶硅中的光致衰减现象,其光电导、暗电导在光照过程中没有下降反而有所上升且电导率变化快慢受氢稀释度的制约.多晶硅薄膜的光照稳定性可能来源于高的晶化度及Cl元素的存在.  相似文献   

4.
用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对以SiH4/H2及SiCl4/H2为源气体、采用 等离子体增强化学气相沉积技术制备的非晶硅薄膜和多晶硅薄膜进行了光照稳定性的研究.实验表明,制备的多晶硅薄膜并没有出现 非晶硅中的光致衰减现象,其光电导、暗电导在光照过程中没有下降反而有所上升且电导率 变化快慢受氢稀释度的制约.多晶硅薄膜的光照稳定性可能来源于高的晶化度及Cl元素的存在. 关键词: 多晶硅薄膜 稳恒光电导效应 晶界 光致衰退效应  相似文献   

5.
溶液法铝诱导晶化制备多晶硅薄膜   总被引:1,自引:0,他引:1       下载免费PDF全文
罗翀  孟志国  王烁  熊绍珍 《物理学报》2009,58(9):6560-6565
采用铝(Al)盐溶液作为诱导源进行了非晶硅晶化成多晶硅的研究.光学显微镜观测与Raman光谱分析表明,合适配比的铝盐溶液能够将非晶硅予以诱导晶化.采用剥层XPS测试分析,探究了Al盐溶液与硅表面可能的化学反应以及随之发生的硅-铝层交换的过程.最后对溶液法诱导晶化的机理进行了讨论. 关键词: 铝诱导晶化 多晶硅薄膜 溶液法  相似文献   

6.
多晶硅在光电子器件领域具有较为重要的用途。利用磁控溅射镀膜系统,通过共溅射技术在玻璃衬底上制备了非晶硅铝(α-Si/Al)复合膜,将Al原子团包覆在α-Si基质中,膜中的Al含量可通过Al和Si的溅射功率比来调节。复合膜于N2气氛中进行350 ℃,10 min快速退火处理,制备出了多晶硅薄膜。利用X射线衍射仪、拉曼光谱仪和紫外-可见光-近红外分光光度计对多晶硅薄膜的性能进行表征,研究了Al含量对多晶硅薄膜性能的影响。结果表明:共溅射法制备的α-Si/Al复合膜在低温光热退火下晶化为晶粒分布均匀的多晶硅薄膜;随着膜中Al含量逐渐增加,多晶硅薄膜的晶化率、晶粒尺寸逐渐增加,带隙则逐渐降低;Al/Si溅射功率比为0.1时可获得纳米晶硅薄膜,Al/Si溅射功率比为0.3时得到晶化率较高的多晶硅薄膜,通过Al含量的调节可实现多晶硅薄膜的晶化率、晶粒尺寸及带隙的可控。  相似文献   

7.
化学源金属诱导多晶硅研究   总被引:6,自引:0,他引:6       下载免费PDF全文
以硝酸镍溶液为化学源,对于用不同方法沉积得到的非晶硅膜作晶化前驱物,都能予以不同程度的晶化.用VHF-PECVD方法获得的非晶硅膜作前驱物,易于去氢并更容易晶化.当化学源浓度不同时,晶化效果会存在一定差别,在一定的范围内,溶液浓度越高,晶化后形成的晶粒越大.退火气氛对晶化结果产生某些影响,可以发现,在N2气氛下退火,比在大气下有更好的晶化效果.最后对物理源与化学源作诱导金属的晶化结果进行了比较,结果表明,对诱导金属源而言,化学源显示出更为有效的晶化趋势. 关键词: 金属诱导晶化 多晶硅薄膜 低温制备 退火处理  相似文献   

8.
提出了一种表面修饰的金属诱导晶化方法,以稳定地获得晶粒尺寸均匀的多晶硅薄膜.为在非晶硅表面获得均匀稳定的Ni源,在晶化前驱物表面浸沾Ni盐溶液之前,先旋涂一层表面亲合剂.通过控制Ni盐溶液的浓度,可以获得均匀性较好、晶粒尺寸分布在20—70μm的多晶硅薄膜.该方法的特点是改善了Ni盐溶液在表面的黏附状态,从而可在比常规Ni盐溶液浓度低1—2个数量级的情况下仍能获得大晶粒的多晶薄膜. 关键词: 表面修饰 溶液法金属诱导晶化 多晶硅 均匀性  相似文献   

9.
利用电感耦合等离子体增强化学气相沉积法(ICP-PECVD)直接在普通玻璃衬底上低温沉积多晶硅薄 膜,主要研究了不同氢气稀释比例对薄膜沉积特性和微观结构的影响。采用 X 射线衍射仪(XRD)、拉曼光谱仪和 扫描电子显微镜(SEM)表征了在不同氢气比例条件下所制备多晶硅薄膜的微结构、形貌,并对不同条件下样品的 沉积速率进行了分析。实验结果表明:随着混合气体中硅烷比例的增加,薄膜的沉积速率不断增加;晶化率先增 加,后减小;当硅烷含量为4.8%时,晶化率达到最大值67.3%。XRD 和 SEM 结果显示多晶硅薄膜在普通玻璃衬 底上呈柱状生长,且晶粒排列整齐、致密,这种结构可提高载流子的纵向迁移率,有利于制备高效多晶硅薄膜太阳能电池。  相似文献   

10.
铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征   总被引:15,自引:2,他引:13       下载免费PDF全文
铝诱导非晶硅薄膜晶化可以降低退火温度、缩短退火时间,是制备多晶硅薄膜的一种重要方法.在此基础上,通过在退火过程中加入电场加速了界面处硅、铝原子间的互扩散,实现了非晶硅薄膜的快速低温晶化.实验结果表明,外加电场,退火温度为400℃,退火时间为60min时,薄膜的晶化率大于60%;退火温度为450℃退火时间为30min时,薄膜已经呈现明显的晶化现象;退火温度为500℃退火时间为15min时,薄膜的x射线多晶峰强度与非晶峰强度之比为未加电场的3—4倍. 关键词: 非晶硅薄膜 多晶硅薄膜 外加电场  相似文献   

11.
NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl2·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O), nickel hydroxide hexahydrate (Ni(OH)2·6H2O), nickel sulfate tetrahydrate (NiSO4·4H2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl2 and Ni(NO3)2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10−2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.  相似文献   

12.
Self-supported nickel antimonides/Ni architectured electrodes were prepared by solid state reaction from Ni thin film, Ni foam and Ni nanorods. This specific design is expected to optimize both NiSbx/Ni-current collector and NiSbx/electrolyte interfaces of the electrode in the Li ion battery. This new electrode preparation process is based on solid state reaction of antimony with the nickel architectured substrate. Preliminary electrochemical tests of the as-obtained self supported antimonide electrodes show improvement in the capacity retention of the NiSbx active material.  相似文献   

13.
Nanocomposites based on iron and nickel particles encapsulated into carbon (Fe@C and Ni@C), with an average size of the metal core in the range from 5 to 20 nm and a carbon shell thickness of approximately 2 nm, have been prepared by the gas-phase synthesis method in a mixture of argon and butane. It has been found using X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy that iron nanocomposites prepared in butane, apart from the carbon shell, contain the following phases: iron carbide (cementite), α-Fe, and γ-Fe. The phase composition of the Fe@C nanocomposite correlates with the magnetization of approximately 100 emu/g at room temperature. The replacement of butane by methane as a carbon source leads to another state of nanoparticles: no carbon coating is formed, and upon subsequent contact with air, the Fe3O4 oxide shell is formed on the surface of nanoparticles. Nickel-based nanocomposites prepared in butane, apart from pure nickel in the metal core, contain the supersaturated metastable solid solution Ni(C) and carbon coating. The Ni(C) solid solution can decompose both during the synthesis and upon the subsequent annealing. The completeness and degree of decomposition depend on the synthesis regime and the size of nickel nanoparticles: the smaller is the size of nanoparticles, the higher is the degree of decomposition into pure nickel and carbon. The magnetization of the Ni@C nanocomposites is determined by several contributions, for example, the contribution of the magnetic solid solution Ni(C) and the contribution of the nonmagnetic carbon coating; moreover, some contribution to the magnetization can be caused by the superparamagnetic behavior of nanoparticles.  相似文献   

14.
Three series of catalysts, Ni/Al2O3-SiO2, Ni/Al2O3-Cr2O3 and Ni/SiO2-Cr2O3, were prepared by co-precipitation. In all samples the nickel content was kept constant at 70 at.% Ni, while the support composition was varied. The nickel surface areas, which are required to measure the specific catalytic activities, were determined by hydrogen chemisorption. In the case of the single oxide supported nickel catalysts, the order of the specific catalytic activity values was: Ni/Cr2O3<Ni/Al2O3<Ni/SiO2. The specific catalytic activity of the Ni/Al2O3-SiO2 samples, as a function of the support composition, follows approximately the weighted sum of the specific activities of the single oxide supported nickel catalysts. The specific catalytic activity value of the Ni/Al2O3-Cr2O3 and Ni/SiO2-Cr2O3 samples more closely resembled that of Ni/Cr2O3 catalyst. The presence on chromia surface of the chromic anhydride and its tendency to spread onto are supposed to be the cause of this behaviour. Due to their enhanced activity, the Ni/Al2O3-Cr2O3 catalysts can be used for the production and detritiation of heavy water.  相似文献   

15.
Nickel hydroxides with hierarchical micro-nano structures are prepared by a facile homogeneous precipitation method with different nickel salts (Ni(NO3)2·6H2O, NiCl2·6H2O, and NiSO4·6H2O) as raw materials. The effect of nickel sources on the microstructure and lithium storage performance of the nickel hydroxides is studied. It is found that all the three prepared samples are α-nickel hydroxide. The nickel hydroxides synthesized with Ni(NO3)2·6H2 or NiCl2·6H2O show a similar particle size of 20–30 μm and are composed of very thin nano-sheets, while the nickel hydroxide synthesized with Ni(SO4)2·6H2O shows a larger particle size (30–50 μm) and consists of very thin nano-walls. When applied as anode materials for lithium-ion batteries (LIBs), the nickel hydroxide synthesized with NiSO4·6H2O exhibits the highest discharge capacity, but its cyclic stability is very poor. The nickel hydroxides synthesized with NiCl2·6H2O exhibit higher discharge capacity than the nickel hydroxides synthesized with Ni(NO3)2·6H2O, and both of them show much improved cyclic stability and rate capability as compared to the nickel hydroxide synthesized with Ni(SO4)2·6H2O. Moreover, pseudocapacitive behavior makes a great contribution to the electrochemical energy storage of the three samples. The discrepancies of lithium storage performance of the three samples are analyzed by ex-situ XRD, FT-IR, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) tests.  相似文献   

16.
Nickel nanoparticles were grown in silica glass by annealing of the sol-gel prepared silicate matrices doped with nickel nitrate. TEM characterization of Ni/SiO2 glass proves the formation of isolated spherical nickel nanoparticles with mean sizes 6.7 and 20 nm depending on annealing conditions. The absorption and photoluminescence spectra of Ni/SiO2 glasses were measured. In the absorption spectra, we observed the band related to the surface plasmon resonance (SPR) in Ni nanoparticles. The broadening of SPR was observed with decrease of Ni nanoparticle size. The width of the surface plasmon band decreases 1.5 times at the lowering of temperature from 293 to 2 K because of strong electron-phonon interaction. The spectra proved the creation of nickel oxide NiO clusters and Ni2+ ions in silica glass as well.  相似文献   

17.
The electrodeposition process of nickel and the substrate used for the electrodeposition can be improved to obtain an effective catalyst for methanol oxidation. Thus, nanoparticles of nickel have been uniformly electrodeposited on the surface of previously anodized titanium at 5 V during 1 h. The optimized microstructure has been studied by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The XPS and argon-ion etching experiments have revealed the composition profile of the titanium/titania/nickel thin film electrode. Metallic Ni is detected by XRD. The nickel particles dispersed in a porous TiO2 substrate have great catalytic activity for methanol oxidation in basic solution and through the redox couple NiO(OH)/Ni(OH)2. The optimized titania substrate yields to electrodes (crystalline titanium/amorphous titania/nanocrystalline nickel) with higher catalytic activity than non-anodized metallic titanium (titanium/nickel). However, further oxidation and thickening of the titania film drives to poorer electrochemical behavior. The SEM and EDS results show that the nickel particles exhibit certain tendency to agglomerate and to form spherical particles of around 2 μm. This electrode material also is active to oxidize ethanol, but this activity is poorer.  相似文献   

18.
The adsorption of hydrogen on a clean Cu10%/Ni90% (110) alloy single crystal was studied using flash desorption spectroscopy (FDS), Auger electron spectroscopy (AES), and work function measurements. Surface compositions were varied from 100% Ni to 35% Ni. The hydrogen chemisorption on a-surface of 100% nickel revealed strong attractive interactions between the hydrogen atoms in accordance with previous work on Ni(100). Three desorption states (β1, β2 and α) appeared in the desorption spectra. The highest temperature (α) state was occupied only after the initial population of the β2-state. As the amount of copper was increased in the nickel substrate, desorption from the higher energy binding α-state was reduced, indicating a decrease in the attractive interactions among hydrogen atoms. The hydrogen coverage at saturation was not affected by the addition of copper to the nickel substrate until the copper concentration was greater than 25% at which a sharp reduction in saturation coverage occurred. This phenomenon was apparently due to the adsorption of hydrogen on Ni atoms followed by occupation of NiNi and CuNi bridged adsorption sites, while occupation of CuCu sites was restricted due to an energy barrier to migration.  相似文献   

19.
The tip blunting technique to measure the surface self-diffusion of clean metals (A. Piquet, Vu Thien Binh, H. Roux, R. Uzan and M. Drechsler) is extended to study the influence of an adsorption layer on diffusion. The system studied is nickel on tungsten. The increase of the apex radius is measured by means of FEM characteristics. In the temperature range used (1200–1500 K), the nickel monolayer (1.16 × 1015 atoms/cm2) is maintained by compensation of desorbed Ni atoms with a continual flux from an evaporation source. The adsorption life time between 1350 and 1500 K decreases from 850 to 16 s. The conservation of the degree of coverage leads to a method to determine the desorption activation energy of nickel (Ed = 4.56 eV/atom). The surface self-diffusion data of tungsten with a nickel monolayer are found to be D0 = 3 × 10?3cm/2s and Qs = 1.9 eV/atom, compared to the clean tungsten data D0 = 1 cm2/s and Qs = 3.1 eV/atom. The Ni monolayer increases the surface self-diffusion coefficient by a factor 160 at 1200 K and 20 at 1500 K. The results are discussed with respect to nickel activated sintering of tungsten powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号