首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the measurement of the frequency noise properties of a 4.6-??m distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6?cm?1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below ${\approx} 1~\mbox{nA/}\sqrt{}\mbox{Hz}$ allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of ${\approx} 1.6~\mbox{MHz/}(\mbox{nA/}\sqrt{}\mbox{Hz})$ for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several $\mbox{nA/}\sqrt{}\mbox{Hz}$ , leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only $350~\mbox{pA/}\sqrt{}\mbox{Hz}$ current noise, which is suitable to observe the ??550?kHz linewidth of our QCL.  相似文献   

2.
Room-temperature pulsed and continuous-wave (cw) operation of a tunable external cavity (EC) quantum cascade laser (QCL) at an emitting wavelength of $4.7\,\upmu \hbox {m}$ 4.7 μ m was presented. The effect of different external cavity lengths and grating angles of the EC–QCL system were analyzed numerically. A wide tuning range greater than $131\,\hbox {cm}^{-1}$ 131 cm - 1 was obtained in pulsed mode at room temperature. Without the anti-reflection coating procedure, single-mode cw operation with a side-mode suppression ratio (SMSR) above 20 dB and a wide tuning range greater than $116\, \hbox {cm}^{-1}$ 116 cm - 1 were achieved. Near the center region, SMSR about 30 dB was also realized through designing the external cavity length. Strain-compensation combined with two-phonon resonance in an active region design and the high-reflection coating promised low threshold current density. A record low threshold current density of $0.901\,\hbox {kA/cm}^{2}$ 0.901 kA/cm 2 for an EC–QCL operated in cw mode was realized.  相似文献   

3.
Ho^3+ : GdVO4 is a new laser material suitable for high-power laser systems. In this paper we measure the absorption spectra of Ho^3+ in the sample Ho^3+: GdVO4. The intensity parameters are calculated by using the Judd-Ofelt theory. Some predicted spectroscopic parameters, such as the spontaneous radiative transition rate, branching ratio and integrated emission cross section are dealt with. And we also compare the optical parameters with those of other materials. From these results, it is found that there are many transitions which have large oscillator strengths and large integrated emission cross sections. Especially the transitions such as ^5 F4 → ^5 I 8, ^5 S2→^5 I8, ^5 F5 → ^5 I8 and ^5 I7 →^ 5 I8 are useful in solid-state lasers and other fields. Finally, we discuss the splitting of the energy levels of Ho^3+ in the crystal GdVO4 based on the group theory.  相似文献   

4.
Joly  L.  Zéninari  V.  Decarpenterie  T.  Cousin  J.  Grouiez  B.  Mammez  D.  Durry  G.  Carras  M.  Marcadet  X.  Parvitte  B. 《Laser Physics》2011,21(4):805-812
Mid infra-red absorption spectrometry based on continuous-wave distributed feedback (DFB) quantum cascade laser (QCL) is more and more widely used for trace gas detection and pollution monitoring. The main advantages of this technique are high sensitivity, high selectivity and a potential for extreme compactness. Various examples of trace gas detection for atmospheric detection will be presented in this paper. Commercial QCLs available on the shelves were first implemented. A cryogenic QCL emitting at 6.7 μm was used to demonstrate the detection of water vapor and its isotopes. A room-temperature QCL was then used to simultaneously detect methane and nitrous oxide at 7.9 μm. Recently, we have developed a room-temperature top grating DFB QCL designed around 4.5 μm for the demonstration of N2O detection in the ppb range. Atmospheric applications of these spectrometers will be presented. The improvements of QCL performances make it now possible to develop instruments that are more and more compact and therefore compatible with in situ applications.  相似文献   

5.
《中国物理 B》2021,30(7):70601-070601
Caesium atomic fountain clock is a primary frequency standard, which realizes the duration of second. Its performance is mostly dominated by the frequency accuracy, and the C-field induced second-order Zeeman frequency shift is the major effect, which limits the accuracy improvement. By applying a high-precision current supply and high-performance magnetic shieldings, the C-field stability has been improved significantly. In order to achieve a uniform C-field, this paper proposes a doubly wound C-field solenoid, which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift. Based on the stable and uniform C-field, we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F = 3, mF=-1 → |F = 4, mF=-1 central frequency, obtaining this frequency shift as 131.03×10~(-15) and constructing the C-field profile(σ = 0.15 n T). Meanwhile, during normal operation, we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition |F = 3, mF=-1 → |F = 4, mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain. The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10~(-15). The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10~(-17). Compared with NTSC-F1, NTSC-F2, there appears a significant improvement.  相似文献   

6.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

7.
慈志鹏  王育华  张加弛 《中国物理 B》2010,19(5):57803-057803
Novel Y1 x yVO4:xDy3+,yBi3+(0.01 ≤ x ≤ 0.05,0 ≤ y ≤ 0.20) phosphors for light emitting diode(LED) were successfully synthesised by solid-state reaction.The calculation results of electronic structure show that YVO4 has a direct band gap with 3 eV at G.The top of the valence band is dominated by O 2p state and the bottom of the conduction band is mainly composed of O 2p and V 3d states.An efficient yellow emission under near-ultraviolet(365 nm) excitation is observed.Compared with the pure YVO4:Dy3+ samples,the Dy3+,Bi3+ co-doped samples show a more intensive emission peak(at 574 nm) and a new broad emission band(450-770 nm),due to the 4F9/2 6H13/2 transition of Dy3+ and the emission of the VO3 4 Bi3+ complex respectively.The optimum chromaticity index of Y1 x yVO4:xDy3+,yBi3+(0.01 ≤ x ≤ 0.05,0 ≤ y ≤ 0.20) is(0.447,0.497),which indicates that YVO4:Dy3+,Bi3+ has higher colour saturation than the commercial phosphor YAG:Ce3+.The effects of concentration of Dy3+,Bi3+,electric states and the photoluminescence properties are discussed in details.  相似文献   

8.
陈德应  张盛  夏元钦 《中国物理 B》2009,18(7):3073-3078
Using a neutral N2 beam as target,this paper studies the dissociation of N2+ in intense femtosecond laser fields(45 fs,~1×10 16 W/cm 2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N + fragment ions.The angular distributions of N+ and the laser power dependence of N + yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states(A,B and C) and the upper excited states of N2+.A coupling model of light-dressed potential energy curves of N+2 is used to interpret the kinetic energy release of N+.  相似文献   

9.
The Ho:YAP crystal is grown by the Czochralski technique.The room temperature polarized absorption spectra of Ho:YAP crystal was measured on a c cut sample with 1 at% holmium.According to the obtained Judd-Ofelt intensity parameters Ω2 = 1.42 × 10-20 cm2,Ω4 = 2.92 × 10-20 cm2,and Ω6 = 1.71 × 10-20 cm2,this paper calculated the fluorescence lifetime to be 6 ms for 5I7 →5 I8 transition,and the integrated emission cross section to be 2.24×10-18 cm2.It investigates the room temperature Ho:YAP laser end pumped by a 1.91 μm Tm:YLF laser.The maximum output power was 4.1 W when the incident 1.91 μm pump power was 14.4 W.The slope efficiency is 40.8%,corresponding to an optical to optical conversion efficiency of 28.4%.The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.  相似文献   

10.
Terahertz radiation generation by second-order nonlinear mixing of laser $ (\omega_{1} ,\,\vec{k}_{1} ) $ and its frequency shifted second harmonic $ \omega_{2} = 2\omega_{1} - \omega ,\,\,\vec{k}_{2} \, $ $ (\omega \ll \omega_{1} ) $ in a plasma, in the presence of an obliquely inclined density ripple of wave number $ \vec{q} $ , are investigated. The lasers exert ponderomotive force on electrons and drive density perturbations at $ (2\omega_{1} ,\,2\vec{k}_{1} - \vec{q}) $ and $ (\omega_{1} - \omega_{2} ,\,\vec{k}_{1} - \vec{k}_{2} - \vec{q}) $ . These perturbations beat with the electron oscillatory velocities due to the lasers to produce a nonlinear current at $ \omega ,\,\vec{k} = 2\vec{k}_{1} - \vec{k}_{2} - \vec{q} $ , resonantly driving the terahertz radiation when $ \vec{q} $ satisfies the phase matching condition. The radiated THz intensity depends on the relative polarization of the lasers and scales as the square of intensity of the fundamental laser and linearly with the square root of the intensity of the second harmonic. The THz emission is maximized when the polarization of the lasers is aligned. These results are consistent with the recent experimental results.  相似文献   

11.
Benquan Lu 《中国物理 B》2022,31(4):43101-043101
In the weak-magnetic-field approximation, we derived an expression of quadratic Zeeman shift coefficient of $^3P^{\rm o}_0$ clock state for $^{88}$Sr and $^{87}$Sr atoms. By using this formula and the multi-configuration Dirac-Hartree-Fock theory, the quadratic Zeeman shift coefficients were calculated. The calculated values $C_2$ = $-23.38(5)$ MHz/T$^2$ for $^{88}$Sr and the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states for $^{87}$Sr agree well with the other available theoretical and experimental values, especially the most accurate measurement recently. In addition, the calculated values of the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states were also determined in our $^{87}$Sr optical lattice clock. The consistency with measurements verifies the validation of our calculation model. Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition, for example, the new proposed $^1S_0$, $F = 9/2$, $M_F = \pm5/2$-${}^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm3/2$ transitions.  相似文献   

12.
Xiaolei Liu 《中国物理 B》2023,32(1):18102-018102
Monoclinic $\alpha $-MoP$_{2}$, with the OsGe$_{2}$-type structure (space group $C2/m$, $Z = 4$) and lattice parameters $a = 8.7248(11) $ Å, $b = 3.2322(4) $ Å, $c = 7.4724(9) $ Å, and $\beta =119.263^\circ $, was synthesized under a pressure of 4 GPa at a temperature between 1100 ${^\circ}$C and 1200 ${^\circ}$C. The structure of $\alpha $-MoP$_{2}$ and its relationship to other transition metal diphosphides are discussed. Surprisingly, the ambient pressure phase orthorhombic $\beta $-MoP$_{2}$ (space group Cmc2$_{1}$) is denser in structure than $\alpha $-MoP$_{2}$. Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition from $\beta $-MoP$_{2}$ to $\alpha $-MoP$_{2}$, suggesting that $\alpha $-MoP$_{2}$ is a stable phase at ambient conditions; this is also supported by the total energy and phonon calculations.  相似文献   

13.
The transition energies, wavelengths and dipole oscillator strengths of 1s^22p-1s^2nd (3 ≤ n ≤ 9) for Cr^21+ ion are calculated. The fine structure splittings of 1s^2nd (n ≤ 9) states for this ion are also calculated. In calculating energy, we have estimated the higher-order relativistic contribution under a hydrogenic approximation. The quantum defect of Rydberg series 1s^2nd is determined according to the quantum defect theory. The results obtained in this paper excellently agree with the experimental data available in the literature. Combining the quantum defect theory with the discrete oscillator strengths, the discrete oscillator strengths for the transitions from initial state 1s^22p to highly excited 1s^2nd states (n ≥ 10) and the oscillator strength density corresponding to the bound-free transitions are obtained.  相似文献   

14.
Zi-Hao Chen 《中国物理 B》2023,32(1):17301-017301
The Ga$_{2}$O$_{3}$ films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters (such as argon-oxygen flow ratio, sputtering power, sputtering time and annealing temperature) on the growth and properties ($e.g.$, surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer (XRD), scanning electron microscope (SEM), and ultraviolet-visible spectrophotometer (UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the $\beta $-Ga$_{2}$O$_{3}$ film are influenced by those parameters. All $\beta $-Ga$_{2}$O$_{3 }$films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The $I$-$V$ curves show that the Ohmic behavior between metal and $\beta $-Ga$_{2}$O$_{3}$ films is obtained at 900 ${^\circ}$C. Those results will be helpful for the further research of $\beta $-Ga$_{2}$O$_{3}$ photoelectric semiconductor.  相似文献   

15.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

16.
A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel $\lambda _{1}=1570.83$~nm; 80th channel $\lambda _{2}=1603.57$ nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this paper, of which the cladding mode loss, the delay curve ripple and the power fluctuation of the reflected spectrum are less than 0.5 dB, 50 ps and 0.25 dB, respectively. With this new FBG as dispersion compensation device, a $2\times 10$ Gb/s wavelength division multiplexing (WDM) L-band transmission of 600 km based on conventional single mode fibre (G.652 fibre) is performed without forward error correction. The bit error rate (BER) is less than 10$^{ - 12}$ and the power penalties of the 2{nd} and 80{th} channel of L-band are 1.8~dB and 2.0~dB, respectively.  相似文献   

17.
Hao Sun 《中国物理 B》2022,31(11):117503-117503
The magnetic and magnetocaloric effects (MCE) of the amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ ($RE={\rm Er}$ and Tm) ribbons were systematically investigated in this paper. Compounds with $R ={\rm Er}$ and Tm undergo a second-order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) around Curie temperature $T_{\rm C} \sim 9.3$ K and 3 K, respectively. For Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compound, an obvious magnetic hysteresis and thermal hysteresis were observed at low field below 6 K, possibly due to spin-glass behavior. Under the field change of 0 T-5 T, the maximum values of magnetic entropy change ($-\Delta S_{\rm M}^{\rm max}$) reach as high as 15.6 J/kg$\cdot$K and 15.7 J/kg$\cdot$K for Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ and Tm$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compounds, corresponding refrigerant capacity (RC) values are estimated as 303 J/kg and 189 J/kg, respectively. The large MCE makes amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5 }$ ($RE={\rm Er}$ and Tm) alloys become very attractive magnetic refrigeration materials in the low-temperature region.  相似文献   

18.
艾琼  付志坚  程艳  陈向荣 《中国物理 B》2008,17(7):2639-2645
This paper investigates the electronic structure and thermodynamic properties of LiBC in the hexagonal structure by using the generalized gradient approximation (GGA) and local density approximation correction scheme in the frame of density functional theory. The geometric structure of LiBC under zero pressure, and the dependences of the normalized lattice parameters a/ao and c/co, the ratio e/a, the normalized primitive volume V/Vo on pressure are given. The thermodynamic quantity (including the heat capacity Cv, Debye temperature 6~D, thermal expansion a and Grfineisen parameter -y) dependences on temperature and pressure are obtained through the GGA method and the quasi-harmonic Debye model. The band structures and density of state of LiBC under different pressures have also been analysed.  相似文献   

19.
谭昌龙  蔡伟  田晓华 《中国物理》2006,15(11):2718-2723
In this paper a first-principles study of the electronic structure and stability of B2 TiDFT TiNiHf 电子结构 马氏体转化温度 平面波DFT, TiNiHf, electronic structure, martensitic transformation temperatureProject supported by the National Natural Science Foundation of China (Grant No 50471018).3/3/2006 12:00:00 AM6/7/2006 12:00:00 AMIn this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure.  相似文献   

20.
Tao Ma 《中国物理 B》2021,30(11):114208-114208
A biological sensing structure with a high-order mode ($\mathrm{E}_{21}^{y}$) is designed, which is composed of a suspended racetrack micro-resonator (SRTMR) and a microfluidic channel. The mode characteristics, coupling properties, and sensing performances are simulated by using the finite element method (FEM). To analyze the mode confinement property, the confinement factors in the core and cladding of the suspended waveguide for the $\mathrm{E}_{11}^{x}$, $\mathrm{E}_{11}^{y}$, and $\mathrm{E}_{21}^{y}$ are calculated. The simulation results show that the refractive index (RI) sensitivity of the proposed sensing structure can be improved by using the high-order mode ($\mathrm{E}_{21}^{y}$). The RI sensitivity for the $\mathrm{E}_{21}^{y}$ mode is ~ 201 nm/RIU, which is twice to thrice higher than those for the $\mathrm{E}_{11}^{x}$ mode and the $\mathrm{E}_{11}^{y}$ mode. Considering a commercial spectrometer, the proposed sensing structure based on the SRTMR achieves a limit of detection (LOD) of ~ 4.7×10-6 RIU. Combined with the microfluidic channel, the SRTMR can possess wide applications in the clinical diagnostic assays and biochemical detections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号