首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chunzao Wang 《中国物理 B》2022,31(4):47304-047304
A lateral insulated gate bipolar transistor (LIGBT) based on silicon-on-insulator (SOI) structure is proposed and investigated. This device features a compound dielectric buried layer (CDBL) and an assistant-depletion trench (ADT). The CDBL is employed to introduce two high electric field peaks that optimize the electric field distributions and that, under the same breakdown voltage (BV) condition, allow the CDBL to acquire a drift region of shorter length and a smaller number of stored carriers. Reducing their numbers helps in fast-switching. Furthermore, the ADT contributes to the rapid extraction of the stored carriers from the drift region as well as the formation of an additional heat-flow channel. The simulation results show that the BV of the proposed LIGBT is increased by 113% compared with the conventional SOI LIGBT of the same length LD. Contrastingly, the length of the drift region of the proposed device (11.2 μ) is about one third that of a traditional device (33 μ) with the same BV of 141 V. Therefore, the turn-off loss (EOFF) of the CDBL SOI LIGBT is decreased by 88.7% compared with a conventional SOI LIGBT when the forward voltage drop (VF) is 1.64 V. Moreover, the short-circuit failure time of the proposed device is 45% longer than that of the conventional SOI LIGBT. Therefor, the proposed CDBL SOI LIGBT exhibits a better VF-EOFF tradeoff and an improved short-circuit robustness.  相似文献   

2.
A high voltage( 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two oxide trenches in the drift region and a trench gate extended to the buried oxide(BOX).Firstly,the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si.Secondly,oxide trenches bring in multi-directional depletion,leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field(RESURF) effect.Both increase the breakdown voltage(BV).Thirdly,oxide trenches fold the drift region around the oxide trenches,leading to a reduced cell-pitch.Finally,the oxide trenches enhance the conductivity modulation,resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop(Von).The oxide trenches cause a low anode-cathode capacitance,which increases the switching speed and reduces the turn-off energy loss(Eoff).The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm,a Von of 1.03 V at 100 A/cm-2,a turn-off time of 250 ns and Eoff of 4.1×10?3 mJ.The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits,simplifying the fabrication processes.  相似文献   

3.
双面阶梯埋氧层部分SOI高压器件新结构   总被引:4,自引:0,他引:4       下载免费PDF全文
李琦  张波  李肇基 《物理学报》2008,57(10):6565-6570
提出了双面阶梯埋氧层部分绝缘硅(silicon on insulator,SIO)高压器件新结构. 双面阶梯埋氧层的附加电场对表面电场的调制作用使表面电场达到近似理想的均匀分布, 耗尽层通过源极下硅窗口进一步向硅衬底扩展, 使埋氧层中纵向电场高达常规SOI结构的两倍, 且缓解了常规SOI结构的自热效应. 建立了漂移区电场的二维解析模型, 获得了器件结构参数间的优化关系. 结果表明, 在导通电阻相近的情况下, 双面阶梯埋氧层部分SOI结构击穿电压较常规SOI器件提高58%, 温度降低10—30K. 关键词: 双面阶梯 埋氧层 调制 自热效应  相似文献   

4.
罗小蓉  王元刚  邓浩  Florin Udrea 《中国物理 B》2010,19(7):77306-077306
A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI.At a low k value the electric field strength in the dielectric buried layer (E I) is enhanced and a Si window makes the substrate share the vertical drop,resulting in a high vertical breakdown voltage;in the lateral direction,a high electric field peak is introduced at the Si window,which modulates the electric field distribution in the SOI layer;consequently,a high breakdown voltage (BV) is obtained.The values of EI and BV of LK PSOI with kI=2 on a 2 μm thick SOI layer over 1 μm thick buried layer are enhanced by 74% and 19%,respectively,compared with those of the conventional PSOI.Furthermore,the Si window also alleviates the self-heating effect.  相似文献   

5.
A silicon-on-insulator (SOI) high performance lateral double-diffusion metal oxide semiconductor (LDMOS) on a compound buried layer (CBL) with a step buried oxide (SBO CBL SOI) is proposed.The step buried oxide locates holes in the top interface of the upper buried oxide (UBO) layer.Furthermore,holes with high density are collected in the interface between the polysilicon layer and the lower buried oxide (LBO) layer.Consequently,the electric fields in both the thin LBO and the thick UBO are enhanced by these holes,leading to an improved breakdown voltage.The breakdown voltage of the SBO CBL SOI LDMOS increases to 847 V from the 477 V of a conventional SOI with the same thicknesses of SOI layer and the buried oxide layer.Moreover,SBO CBL SOI can also reduce the self-heating effect.  相似文献   

6.
石艳梅  刘继芝  姚素英  丁燕红  张卫华  代红丽 《物理学报》2014,63(23):237305-237305
为了提高小尺寸绝缘体上硅(SOI)器件的击穿电压,同时降低器件比导通电阻,提出了一种具有L型源极场板的双槽SOI高压器件新结构.该结构具有如下特征:首先,采用了槽栅结构,使电流纵向传导面积加宽,降低了器件的比导通电阻;其次,在漂移区引入了Si O2槽型介质层,该介质层的高电场使器件的击穿电压显著提高;第三,在槽型介质层中引入了L型源极场板,该场板调制了漂移区电场,使优化漂移区掺杂浓度大幅增加,降低了器件的比导通电阻.二维数值仿真结果表明:与传统SOI结构相比,在相同器件尺寸时,新结构的击穿电压提高了151%,比导通电阻降低了20%;在相同击穿电压时,比导通电阻降低了80%.与相同器件尺寸的双槽SOI结构相比,新结构保持了双槽SOI结构的高击穿电压特性,同时,比导通电阻降低了26%.  相似文献   

7.
郑直  李威  李平 《中国物理 B》2013,(4):471-475
A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.  相似文献   

8.
吴丽娟  胡盛东  罗小蓉  张波  李肇基 《中国物理 B》2011,20(10):107101-107101
A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown characteristics are investigated theoretically. A high concentration of charges accumulate on the interface, whose density changes with the negative drain voltage, which increase the electric field (EI) in the dielectric buried oxide layer (BOX) and modulate the electric field in drift region . This results in the enhancement of the breakdown voltage (BV). The values of EI and BV of an HI PSOI with a 2-μm thick SOI layer over a 1-μm thick buried layer are 580V/μm and -582 V, respectively, compared with 81.5 V/μm and -123 V of a conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect (SHE). Moreover, in comparison with the conventional device, the proposed device exhibits low on-resistance.  相似文献   

9.
胡盛东  吴丽娟  周建林  甘平  张波  李肇基 《中国物理 B》2012,21(2):27101-027101
A novel silicon-on-insulator (SOI) high-voltage device based on epitaxy-separation by implantation oxygen (SIMOX) with a partial buried n+-layer silicon-on-insulator (PBN SOI) is proposed in this paper. Based on the proposed expressions of the vertical interface electric field, the high concentration interface charges which are accumulated on the interface between top silicon layer and buried oxide layer (BOX) effectively enhance the electric field of the BOX (EI), resulting in a high breakdown voltage (BV) for the device. For the same thicknesses of top silicon layer (10 μm) and BOX (0.375 upmum), the EI and BV of PBN SOI are improved by 186.5% and 45.4% in comparison with those of the conventional SOI, respectively.  相似文献   

10.
胡盛东  张波  李肇基  罗小蓉 《中国物理 B》2010,19(3):37303-037303
A new partial-SOI (PSOI) high voltage device structure called a CI PSOI (charge island PSOI) is proposed for the first time in this paper. The device is characterized by a charge island layer on the interface of the top silicon layer and the dielectric buried layer in which a series of equidistant high concentration n+-regions is inserted. Inversion holes resulting from the vertical electric field are located in the spacing between two neighbouring n+-regions on the interface by the force with ionized donors in the undepleted n+-regions, and therefore effectively enhance the electric field of the dielectric buried layer (EI) and increase the breakdown voltage (BV), thereby alleviating the self-heating effect (SHE) by the silicon window under the source. An analytical model of the vertical interface electric field for the CI PSOI is presented and the analytical results are in good agreement with the 2D simulation results. The BV and EI of the CI PSOI LDMOS increase to 631~V and 584~V/μ m from 246~V and 85.8~V/μ m for the conventional PSOI with a lower SHE, respectively. The effects of the structure parameters on the device characteristics are analysed for the proposed device in detail.  相似文献   

11.
A new SOI power device with multi-region high-concentration fixed charge(MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer(BOX), by which the high-concentration dynamic electrons and holes are induced at the top and bottom interfaces of BOX. The inversion holes can enhance the vertical electric field and raise the breakdown voltage since the drain bias is mainly generated from the BOX. A model of breakdown voltage is developed, from which the optimal spacing has also been obtained. The numerical results indicate that the breakdown voltage of device proposed is increased by 287% in comparison to that of conventional LDMOS.  相似文献   

12.
何逸涛  乔明  张波 《中国物理 B》2016,25(12):127304-127304
A novel ultralow turnoff loss dual-gate silicon-on-insulator(SOI) lateral insulated gate bipolar transistor(LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well and n-drift, and an n-type carrier stored(CS) layer beneath the p-well. In the on-state, the extra trench gate acts as a barrier, which increases the carrier density at the cathode side of n-drift region, resulting in a decrease of the on-state voltage drop(Von). In the off-state, due to the uniform carrier distribution and the assisted depletion effect induced by the extra trench gate, large number of carriers can be removed at the initial turnoff process, contributing to a low turnoff loss(Eoff). Moreover, owing to the dual-gate field plates and CS layer, the carrier density beneath the p-well can greatly increase, which further improves the tradeoff between Eoffand Von. Simulation results show that Eoff of the proposed SOI LIGBT can decrease by 77% compared with the conventional trench gate SOI LIGBT at the same Von of 1.1 V.  相似文献   

13.
A novel shorted anode lateral-insulated gate bipolar transistor(SA LIGBT)with snapback-free characteristic is proposed and investigated.The device features a controlled barrier Vbarrierand resistance RSAin anode,named CBR LIGBT.The electron barrier is formed by the P-float/N-buffer junction,while the anode resistance includes the polysilicon layer and N-float.At forward conduction stage,the Vbarrierand RSAcan be increased by adjusting the doping of the P-float and polysilicon layer,respectively,which can suppress the unipolar mode to eliminate the snapback.At turn-off stage,the low-resistance extraction path(N-buffer/P-float/polysilicon layer/N-float)can quickly extract the electrons in the N-drift,which can effectively accelerate the turn-off speed of the device.The simulation results show that at the same Von of 1.3 V,the Eoffof the CBR LIGBT is reduced by 85%,73%,and 59.6%compared with the SSA LIGBT,conventional LIGBT,and TSA LIGBT,respectively.Additionally,at the same Eoffof 1.5 m J/cm2,the CBR LIGBT achieves the lowest Von of 1.1 V compared with the other LIGBTs.  相似文献   

14.
乔明  庄翔  吴丽娟  章文通  温恒娟  张波  李肇基 《中国物理 B》2012,21(10):108502-108502
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.  相似文献   

15.
章文通  吴丽娟  乔明  罗小蓉  张波  李肇基 《中国物理 B》2012,21(7):77101-077101
A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and -587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results.  相似文献   

16.
段宝兴  曹震  袁小宁  杨银堂 《物理学报》2014,63(22):227302-227302
针对功率集成电路对低损耗LDMOS (lateral double-diffused MOSFET)类器件的要求,在N型缓冲层super junction LDMOS (buffered SJ-LDMOS)结构基础上, 提出了一种具有N型缓冲层的REBULF (reduced BULk field) super junction LDMOS结构. 这种结构不但消除了N沟道SJ-LDMOS由于P型衬底带来的衬底辅助耗尽效应问题, 使super junction的N区和P区电荷完全补偿, 而且同时利用REBULF的部分N型缓冲层电场调制效应, 在表面电场分布中引入新的电场峰而使横向表面电场分布均匀, 提高了器件的击穿电压. 通过优化部分N型埋层的位置和参数, 利用仿真软件ISE分析表明, 新型REBULF SJ-LDMOS 的击穿电压较一般LDMOS提高了49%左右, 较文献提出的buffered SJ-LDMOS结构提高了30%左右. 关键词: lateral double-diffused MOSFET super junction 击穿电压 表面电场  相似文献   

17.
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1μm which is much larger than the normal value of about 30V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.  相似文献   

18.
李琦  李海鸥  黄平奖  肖功利  杨年炯 《中国物理 B》2016,25(7):77201-077201
A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.  相似文献   

19.
乔明  张波  李肇基  方健  周贤达 《物理学报》2007,56(7):3990-3995
提出一种SOI基背栅体内场降低BG REBULF(back-gate reduced BULk field)耐压技术. 其机理是背栅电压诱生界面电荷,调制有源区电场分布,降低体内漏端电场,提高体内源端电场,从而突破习用结构的纵向耐压限制,提高器件的击穿电压. 借助二维数值仿真,分析背栅效应对厚膜高压SOI LDMOS (>600V) 击穿特性的影响,在背栅电压为330V时,实现器件击穿电压1020V,较习用结构提高47.83%. 该技术的提出,为600V以上级SOI基高压功率器件和高压集成电路的实现提供了一种新的设计思路. 关键词: SOI 背栅 体内场降低 LDMOS  相似文献   

20.
张力  林志宇  罗俊  王树龙  张进成  郝跃  戴扬  陈大正  郭立新 《物理学报》2017,66(24):247302-247302
GaN基高电子迁移率晶体管(HEMT)相对较低的击穿电压严重限制了其大功率应用.为了进一步改善器件的击穿特性,通过在n-GaN外延缓冲层中引入六个等间距p-GaN岛掩埋缓冲层(PIBL)构成p-n结,提出一种基于p-GaN埋层结构的新型高耐压AlGaN/GaN HEMT器件结构.Sentaurus TCAD仿真结果表明,在关态高漏极电压状态下,p-GaN埋层引入的多个反向p-n结不仅能够有效调制PIBL AlGaN/GaN HEMT的表面电场和体电场分布,而且对于缓冲层泄漏电流有一定的抑制作用,这保证了栅漏间距为10μm的PIBL HEMT能够达到超过1700 V的高击穿电压(BV),是常规结构AlGaN/GaN HEMT击穿电压(580 V)的3倍.同时,PIBL结构AlGaN/GaN HEMT的特征导通电阻仅为1.47 m?·cm~2,因此获得了高达1966 MW·cm~(-2)的品质因数(FOM=BV~2/R_(on,sp)).相比于常规的AlGaN/GaN HEMT,基于新型p-GaN埋岛结构的HEMT器件在保持较低特征导通电阻的同时具有更高的击穿电压,这使得该结构在高功率电力电子器件领域具有很好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号