首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用活性亚结构拼接原理,设计制备了18个未见文献报道的新型含1,2,4-三唑环结构单元的吡唑肟醚衍生物.通过~1H NMR、~(13)C NMR和元素分析等手段确认了其结构.初步的生物活性测试结果表明,部分目标化合物对粘虫、蚜虫和朱砂叶螨表现出良好的杀灭效果.在测试浓度为500μg/m L时,目标化合物对粘虫的致死率在90%~100%,与对照药阿维菌素的杀虫效果相近,其中有4个化合物对蚜虫的致死率均为100%,与对照药吡虫啉的防效相当;1-甲基-3-甲基-5-(3,5-二氟苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-1,2,4-三唑-1-基)苯甲基]肟(8p)对朱砂叶螨的致死率为100%,与对照药唑螨酯的防效相当.当测试浓度降为100μg/m L时, 5个化合物对粘虫的致死率在90%~100%, 3个化合物对蚜虫的致死率在80%~100%;化合物8p对朱砂叶螨的致死率为80%.当测试浓度降至20μg/m L时, 2个化合物对粘虫的致死率分别为75%和70%.另外,部分化合物对人肝癌(SMMC-7721)细胞显示出一定的抗肿瘤活性.  相似文献   

2.
蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素和瘦素信号转导通路的负调节因子,PTP1B抑制剂有希望成为治疗II型糖尿病和肥胖症的候选药物.为了寻找非酸类PTP1B抑制剂,设计、合成了一系列含1H-苯并[d]咪唑或1H-苯并[d][1,2,3]三唑的查尔酮类化合物,并对化合物进行了PTP1B抑制活性测定.结果显示,所有化合物对PTP1B均显示出较强的抑制活性,其中2-(1H-苯并[d][1,2,3]三唑-1-基)-N'-(4-(3-(2'-萘基)-3-氧亚基-丙-1-烯基)苯亚甲基)乙酰肼(10i)活性最佳,IC_(50)为(2.98±0.04)μmol·L~(-1).更重要的是,2-(1H-苯并[d][1,2,3]三唑-1-基)-N'-(4-(3-(4-甲基苯基)-3-氧亚基-丙-1-烯基)苯亚甲基)乙酰肼(10h)在20μg/m L的浓度下对T细胞蛋白酪氨酸磷酸酶(TCPTP)没有活性,显示了较好的选择性.  相似文献   

3.
为了探索与发现具有优良生物活性的吡唑肟类衍生物,利用活性基团拼接法,以杀螨剂唑螨酯为先导化合物,引入N-吡啶基吡唑结构单元,设计合成了20个未见文献报道的新型吡唑肟类化合物,化合物结构均经~1H NMR, ~(13)C NMR和元素分析确认.生物活性初步测试结果表明,所有目标化合物在500μg/mL浓度下对东方粘虫均呈现出100%的杀虫活性. 5个化合物在100μg/mL下对东方粘虫的杀灭活性均达100%, 2个化合物在20μg/mL下对东方粘虫仍具有40%的杀虫效果.此外,3个化合物在500μg/mL浓度下对苜蓿蚜的致死率为40%~60%.值得注意的是,5-(2-溴苯氧基)-1,3-二甲基-1H-吡唑-4-甲醛-O-{1-(3-氯吡啶-2-基)-3-[(6-氯吡啶-3-基)甲氧基]-1H-吡唑-5-甲酰基}肟(10b)和5-(4-叔丁基苯氧基)-1,3-二甲基-1H-吡唑-4-甲醛-O-{1-(3-氯吡啶-2-基)-3-[(6-氯吡啶-3-基)甲氧基]-1H-吡唑-5-甲酰基}肟(10k)对东方粘虫的杀虫活性较为突出,可作深入的结构优化与杀虫活性探究.  相似文献   

4.
通过活性基团拼接的方法,将氨基甲酸酯结构和1H-1,2,4-三唑-5-胺有机结合,设计合成了一系列结构新颖的多取代1H-1,2,4-三唑-5-氨基甲酸酯类化合物(5和6),所有化合物的结构经核磁共振(NMR),红外光谱(IR),高分辨质谱(HRMS)及元素分析等方法确证.初步杀虫活性测定结果表明,大部分化合物对桃蚜[Myzus persicae(Sulzer)]具有良好的杀虫活性,致死率大于90%.精密毒力测试结果表明,化合物5b的半致死浓度(LC_(50))为9.49μg/m L,具有进一步研究开发的价值.抑菌活性初步测试结果表明该类化合物的抑菌活性一般,在50μg/m L浓度下少数化合物也表现出一定的离体抑菌活性.对此类化合物的构效关系进行了讨论.  相似文献   

5.
为了从吡唑肟醚类化合物中寻找新的活性物质,利用活性亚结构拼接原理,设计并合成了一系列新型含噁唑环结构的吡唑肟醚类衍生物共计15个.通过~1H NMR、~(13)C NMR和元素分析等手段确证了目标化合物的结构.初步的生物活性测试结果表明,大多数目标化合物对朱砂叶螨、蚜虫和粘虫显示出良好的防治效果.在测试浓度为500μg/mL时,10个化合物对朱砂叶螨均具有80%以上杀死率,其中4个化合物对朱砂叶螨表现出与对照药唑螨酯相当的防治效果,9个化合物对蚜虫的杀死率均达100%,与对照药吡虫啉的杀虫效果相近,14个化合对粘虫的杀死率均为100%,与对照药啶虫丙醚的防效相当.当测试浓度为100μg/m L时, 3个化合物对朱砂叶螨的杀死率均为60%, 2个化合物对蚜虫的杀死率分别为90%和100%.当测试浓度降至20μg/m L时, 1,3-二甲基-5-(4-甲基苯氧基)-1H-吡唑-4-甲醛-O-[4-(噁唑-5-基)苯甲基]肟(7i)对蚜虫仍呈现出一定的杀虫效果,其杀死率为60%.  相似文献   

6.
为了发现具有良好生物活性的吡唑肟化合物,以唑螨酯为先导化合物,在吡唑肟中引入取代噁唑结构,设计并制备了20个未见文献报道的新型吡唑肟衍生物,利用1H NMR,13C NMR和元素分析确证了目标产物的结构.生物活性测试结果显示,部分目标化合物在500和100μg/mL浓度下对粘虫或蚜虫表现出优良的杀虫活性,其中5-(3-氟苯氧基)-1,3-二甲基-1H-吡唑-4-甲酰基-O-{[5-(4-氯苯基)噁唑-2-基]甲基}肟(9j)、5-(4-氟苯氧基)-1,3-二甲基-1H-吡唑-4-甲酰基-O-{[5-(4-氯苯基)噁唑-2-基]甲基}肟(9k)、5-(4-叔丁基苯氧基)-1,3-二甲基-1H-吡唑-4-甲酰基-O-{[5-(4-氯苯基)噁唑-2-基]甲基}肟(9r)和5-(4-甲氧基苯氧基)-1,3-二甲基-1H-吡唑-4-甲酰基-O-{[5-(4-氯苯基)噁唑-2-基]甲基}肟(9s)在浓度为100μg/mL时对粘虫的防治效果均达100%,5-(4-溴苯氧基)-1,3-二甲基-1H-吡唑-4-甲酰基-O-{[5-(4-氟苯基)噁唑-2-基]甲基}肟(9g)和9s在浓度为100μg/mL时对蚜虫的杀灭活性均为100%.此外,化合物9s在500μg/mL时对朱砂叶螨的防治效果为70%.  相似文献   

7.
以对甲基苯胺为原料,经过重氮化反应生成对甲基叠氮苯(1).在强碱性条件下,1分别与氰基乙酸乙酯、氰基乙酰胺反应,制得中间体1-对甲苯基-5-氨基-1,2,3-三唑甲酸乙酯(2)和1-对甲苯基-5-氨基-1,2,3-三唑甲酰胺(5);中间体2经水解生成1-对甲苯基-5-氨基-1,2,3-三唑甲酸(3),进而在弱酸性条件下与取代苯甲醛反应得到6个未见文献报道的目标化合物1-对甲苯基-5-取代苯基亚胺基-1,2,3-三唑甲酸(4a~4f),5与取代苯甲醛反应得到6个未见文献报道的目标化合物1-对甲苯基-5-取代苯基亚胺基-1,2,3-三唑甲酰胺(6a~6f),化合物的结构均经IR,1H NMR,13C NMR确证.初步生物测试表明,12个化合物均表现出良好的抑菌活性,其中化合物4d~4f和6d~6f对金黄色葡萄球菌、白色念球菌的最小抑菌浓度(MIC)值为2~8μg/mL,抗菌效果优于氟康唑和三氯生.  相似文献   

8.
为了寻找高效低毒的新型抗肿瘤药物,设计并合成了新型的5位与6位取代的吲唑类化合物.采用噻唑蓝(MTT)法对目标化合物在PC-3(人前列腺癌细胞)、MCF-7(人乳腺癌细胞)、Hep G-2(人肝癌细胞)和MGC-803(人胃癌细胞)四种人类癌细胞的抗增殖活性进行评价.结果显示大部分化合物对PC-3具有特异性的抗增殖活性.其中,N-(1-苄基-1H-1,2,3-三唑-4-基)甲基)-1-异丙基-1H-吲哚唑-5-羧酰胺(8a)和N-[(1-苄基-1H-1,2,3-三唑-4-基)甲基]-1-异丙基-1H-吲唑-6-甲酰胺(14a)对PC-3细胞的抗增殖活性较好, IC50值分别为6.21和6.43μmol/L,为前列腺癌抗肿瘤药物的研究提供了思路.  相似文献   

9.
设计合成了一系列新型3-乙酰基-4-肼基-5,5-二取代特窗酸和(E/Z)-3-(1-肼基亚乙基)-5,5-二取代2,4-呋喃二酮衍生物,意外得到4个5-甲基吡唑-4-羧酸甲酯,它们的结构经过HR-ESI-MS, 1H NMR, 13C NMR和X射线衍射的表征.这些肼基与氨基衍生物的生物活性测试结果表明,部分化合物显示出对测试植物病原菌中等至优异的杀菌活性.如在400μg/m L浓度时化合物5G,5H,5I和5i对炭疽病菌有100%的活体抑制活性,化合物5G对霜霉病菌、白粉病菌和锈病病菌的活体抑制活性均为100%.在600μg/m L浓度时化合物5b, 5E和6F对小菜蛾,化合物6A, 6g和6H对桃蚜以及化合物6b对朱砂叶螨的死亡率均为100%. 5,5-螺环己基可以显著提高特窗酸衍生物的杀菌活性,取代肼基的引入可以获得更高的杀虫杀螨活性.化合物5G和5i是最有潜力作为研发新型杀菌剂进行结构修饰的先导化合物.  相似文献   

10.
根据结构拼合原理,分别将1,2,4-三唑和嘧啶连接到酰胺骨架上,设计并合成了两个新型的含氮杂环酰胺类衍生物——3-[N-3-(3-甲基-1H-1,2,4-三唑-1-基)-5-(三氟甲基)苯基硫代乙酰胺基-N-(2-氯苯基次甲基)]-5-(2,4-二氯苯基)-4H-1,2,4-三唑-4-胺和N-【3-【5-氯-2-N-{[2-甲氧基-4-(4-甲基哌嗪-1-基)苯胺]}嘧啶-4-氧醚】】苯基-1-{2-[5-(呋喃-2-基)-1,4-戊二烯-3-酮]苯氧醚}乙酰胺,其结构经1H NMR,13C NMR,19F NMR,IR,ESI-MS和元素分析表征。  相似文献   

11.
以三氟乙酰乙酸乙酯、原甲酸三乙酯、甲基肼、苯基异硫氰酸酯等为原料,通过多步反应制备了一系列含吡唑的三唑硫醚类化合物,并考察了微波辐射对反应的影响.产物结构均经过1H NMR,13C NMR,HRMS和单晶衍射确证.对所有化合物进行了杀菌活性和除草活性进行测试,结果表明部分化合物对瓜类炭疽病具有一定的抑制效果,同时3-烯丙基硫基-5-(1-甲基-3-三氟甲基-1H-吡唑-4-基)-4-苯基-4H-1,2,4-三唑(6i)、2-氯-5-(((5-(1-甲基-3-三氟甲基-1H-吡唑-4-基)-4-苯基-4H-1,2,4-三唑-3-基)硫基)甲基)噻唑(6j)、4-(((5-(1-甲基-3-三氟甲基-1H-吡唑-4-基)-4-苯基-4H-1,2,4-三唑-3-基)硫基)甲基)苯腈(6m)表现出了对双子叶植物的除草活性.  相似文献   

12.
以2-苯基-1,2,3-三唑-4-甲醛(1)为原料,与氨基硫脲缩合,生成醛缩氨基硫脲(2),分别与5种α-溴代芳基乙酮、5种α-溴代-α-(1H-1,2,4-三唑-1-基)芳基乙酮在无水乙醇中回流10~30 min反应,合成了10种新型的含三唑及噻唑基的杂环基醛腙类化合物(3a~3e,4a~4e)。所得化合物的结构经1R、1H NMR和MS及元素分析测试技术确证。  相似文献   

13.
王思宏  尹秀梅 《分析化学》2006,34(3):362-364
采用一维(1D)和二维(2D)核磁共振(NMR)技术对一种抗癫痫活性的化合物1-(2,6-二氟苯甲基)-N-甲基-1H-1,2,3-三唑-4甲酰胺的1H和13C NMR信号进行了归属。  相似文献   

14.
为了寻找具有较好生物活性的吡唑肟醚类衍生物,基于唑螨酯的结构,在吡唑环的4-位引入1,3,4-噁二唑结构,设计合成了15个结构新颖的吡唑肟醚类化合物,它们的结构通过1H NMR、13C NMR、元素分析等手段得到表征.生测研究表明,部分目标化合物在500和100μg/mL浓度下对粘虫(Oriental armyworm)或蚜虫(Aphis medicaginis)都有较好的杀虫效果,其中10a, 10e, 10f和10j在100μg/mL时对粘虫有100%的杀死率, 10g, 10j和10l在100μg/mL时对蚜虫有100%的杀虫活性.另外, 10l在500μg/mL浓度下对朱砂叶螨(Tetranychus cinnabarinus)也具有100%的杀灭效果.  相似文献   

15.
利用生物活性叠加原理,以4-氨基-5-甲基-1,2,4-三唑-3-硫酮为原料,设计合成了15个未见报道的化合物2-N-2′,3′,4′,6′-四-O-乙酰基-β-D-吡喃葡萄糖基-4-N-取代苯基亚胺基-5-甲基-1,2,4-三唑(2a~2e),4-N-取代苄基氨基-5-甲基-1,2,4-三唑(3a~3e)和2-N-2′,3′,4′,6′-四-O-乙酰基-β-D-吡喃葡萄糖基-4-N-取代苄基氨基-5-甲基-1,2,4-三唑(4a~4e).其结构经IR,1H NMR,13C NMR和元素分析确认.生物活性测试表明,所有化合物均表现出一定的抑菌活性,尤其是化合物4b对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度为8μg/mL,明显优于市售抗菌药物氟康唑,表现出较强的抗细菌活性;同时,与三氯生相比,所有化合物对白色念珠菌的最小抑菌浓度(MIC)均小于或等于32μg/mL,亦表现出较好的抗真菌活性.  相似文献   

16.
采用超声辐射法,以2-苯基-1,2,3-三唑-4-甲酰肼为原料,合成了3-(2-苯基-1,2,3-三唑-4-基)-5H-4-氧代噻唑[2,3-c].1,2,4-三唑,再与各种芳香醛进行Knoevenagel缩合反应,合成了一系列噻唑烷酮衍生物.所有目标化合物结构经元素分析,IR,1H NMR确证.  相似文献   

17.
以2,4-二氯苯甲酸为起始原料,经酯化、肼解、成盐、闭环、缩合反应合成了4-(取代苯次甲亚胺基)-5-(2,4-二氯苯基)-2H-1, 2, 4-三唑-3(4H)-硫酮;以2-氨基-3-甲基苯甲酸为原料,经酰化、胺化和取代反应合成了2-(2-氯乙酰氨基)-N-甲基苯甲酰胺。以1%KOH溶液为溶剂,4-(取代苯次甲亚胺基)-5-(2,4-二氯苯基)- 2H-1,2,4-三唑-3(4H)-硫酮与2-(2-氯乙酰氨基)-3-甲基-N-甲基苯甲酰胺于50℃反应4 h合成了13个未见文献报道的含2, 4-二氯苯基1,2,4-三唑1,3,4-噻二嗪喹唑啉类化合物(9a~9m),收率59%~74%,其结构经1H NMR, 13C NMR, 19F NMR和MS表征。采用浊度法测试目标化合物对柑橘溃疡病菌(Xac)、烟草青枯病菌(Rs)、水稻百叶枯病菌(Xoo)的抑制活性。结果表明:当浓度为50 μg/mL时,部分化合物具有较好的抑菌活性,其中化合物9j和对照药剂噻菌酮和叶枯唑的抑制率相当,对柑橘溃疡病菌的抑制率为56.4%,对水稻百叶枯病菌的抑制率为48.5%,具有进一步优化的潜力。  相似文献   

18.
为了提高化合物对植物病原菌的杀菌活性及扩大多样性导向合成策略建立的分子库,以甲氨基替换3-(1-亚胺基乙基)-5,5-二取代-4-苯基呋喃-2(5H)-酮的苯基,设计合成了18个新颖的(E)-3-(1-亚胺基乙基)-5,5-二取代-4-甲氨基呋喃-2(5H)-酮,结构经过~1H NMR, ~(13)C NMR, HR-ESI-MS表征.(E)-3-(1-(4-甲氧基苄氧亚胺基)乙基)-4-甲氨基-1-氧杂螺[4.5]癸-3-烯-2-酮(5O)还经过X射线衍射表征.生物活性测试结果表明,所有化合物对测试的四种植物病原菌均未显示明显的活体杀菌活性,但是意外地发现多个化合物在600μg/mL浓度时对桃蚜、粘虫和小菜蛾的致死率均为100%,显示出良好的杀虫活性.  相似文献   

19.
以2-吲哚酮为先导化合物,设计合成一系列2-吗啉基-1-丙基-1H-吲哚-3-取代酰腙类化合物.目标化合物结构经核磁共振波谱(1H NMR和13C NMR)和高分辨质谱仪(HRMS)进行确证.采用浊度法测试了目标化合物的离体抑菌活性,抑菌活性测试结果表明:目标化合物对柑橘溃疡病菌(Xanthomonas axonopodis pv.Citri,X.citri)、烟草青枯病菌(Ralstonia.Solanacearum,R.solanacearum)和水稻白叶枯病菌(Xanthomonas oryzae pv.Oryzae,X.oryzae)均表现出一定的抑制活性.化合物2-氰基-N'-((2-吗啉基-1-丙基-1H-吲哚-3-基)亚甲基)乙酰肼(12a)、4-氯-N'-((2-吗啉基-1-丙基-1H-吲哚-3-基)亚甲基)苯甲酰肼(12c)、4-氟-N'-((2-吗啉基-1-丙基-1H-吲哚-3-基)亚甲基)苯甲酰肼(12f)、N'-((2-吗啉基-1-丙基-1H-吲哚-3-基)亚甲基)-4-硝基苯甲酰肼(12k)和N'-((2-吗啉基-1-丙基-1H-吲哚-3-基)亚甲基)异烟肼(12m)表现出较好的抑制活性;化合物12a、12c、12f、12k和12m对水稻白叶枯病菌的EC50为73.79、61.94、59.70、36.72和82.79μg/m L,抑制活性优于对照药叶枯唑和噻菌铜(EC50分别为92.4、120.22μg/m L).  相似文献   

20.
为了寻找新型高效低毒的农药先导化合物,采用1-[(杂芳基)甲基]-5-甲基-1H-1,2,3-三唑基-4-甲酰氯与2-氨基-5-烷基-1,3,4-噻二唑的缩合反应,合成了8种未见文献报道的目标化合物,其结构经IR,1H NMR和元素分析确证,部分化合物还经MS的进一步证实.初步的生物活性测试结果表明,部分目标化合物在100 mg/L浓度下对双子叶植物(油菜)显示出中等的除草活性和一定程度的杀虫活性(250 mg/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号