首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   11篇
化学   11篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有11条查询结果,搜索用时 546 毫秒
1.
大量研究表明,细胞分裂周期25磷酸酯酶B(Cdc25B)在许多癌症中都是过度表达的,如乳腺癌、结肠癌、子宫颈癌、肺癌等.因此,抑制Cdc25B是治疗癌症的一种潜在方法.采用微波辐射法,合成出了20个新的2,6-二芳基-咪唑[2,1-b][1,3,4]噻二唑衍生物4,然后再经Vilsmeier-Haack反应,合成出了19个新的2,6-二芳基-咪唑[2,1-b][1,3,4]噻二唑-5-甲醛(5).利用IR,1H NMR和元素分析对新的中间体化合物3及目标产物4和5进行了结构表征.对所合成的目标化合物4和5进行了Cdc25B抑制活性筛选.实验结果表明,在浓度为5μg/mL时,目标化合物4c对Cdc25B的抑制活性最高,抑制率为87.68%,目标化合物4o和5m具有中等的抑制活性,其抑制率分别为55.76%和57.69%.它们是潜在的Cdc25B抑制剂.  相似文献   
2.
以咔唑和4-氰基氯化苄为初始原料,经多步反应合成出了一系列新型含咔唑基团的酰腙衍生物6,并利用IR、1H NMR、13CNMR和元素分析对其进行了结构表征.对目标化合物进行了Cdc25B/PTP1B抑制活性评价,结果显示,目标化合物6对Cdc25B/PTP1B均具有较高的抑制活性,其中4-[(咔唑-9-基)甲基]-N'-(2-羟基-1-萘亚甲基)苯甲酰肼(6g)对Cdc25B和PTP1B的抑制活性最高, IC50值分别为(2.16±0.38)和(1.06±0.23)?g/mL.对化合物6g进行分子对接的研究结果表明, 6g能与Cdc25B/PTP1B酶形成稳定的复合物,形成氢键和疏水等相互作用.  相似文献   
3.
蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素和瘦素信号转导通路的负调节因子,已成为治疗糖尿病和肥胖症的潜在靶标.为了寻找非磷酸酯类PTP1B抑制剂,设计、合成了一系列含3,4-二氢-2(1H)-喹啉酮结构的新型查尔酮衍生物,并对化合物进行了PTP1B抑制活性测定.结果显示,所有化合物对PTP1B均显示出较强的抑制活性,其中化合物(E)-6-{4-[3-(4-氯苯基)-3-氧代-1-丙烯基]苄氧基}-3,4-二氢-2(1H)-喹啉酮(4e)和(E)-6-{4-[3-(3-溴苯基)-3-氧代-1-丙烯基]苄氧基}-3,4-二氢-2(1H)-喹啉酮(4i)活性最佳,IC50分别为(4.64±0.38)和(4.36±0.41)μmol/L.  相似文献   
4.
蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素和瘦素信号转导通路的负调节因子,PTP1B抑制剂有希望成为治疗II型糖尿病和肥胖症的候选药物.为了寻找非酸类PTP1B抑制剂,设计、合成了一系列含1H-苯并[d]咪唑或1H-苯并[d][1,2,3]三唑的查尔酮类化合物,并对化合物进行了PTP1B抑制活性测定.结果显示,所有化合物对PTP1B均显示出较强的抑制活性,其中2-(1H-苯并[d][1,2,3]三唑-1-基)-N'-(4-(3-(2'-萘基)-3-氧亚基-丙-1-烯基)苯亚甲基)乙酰肼(10i)活性最佳,IC_(50)为(2.98±0.04)μmol·L~(-1).更重要的是,2-(1H-苯并[d][1,2,3]三唑-1-基)-N'-(4-(3-(4-甲基苯基)-3-氧亚基-丙-1-烯基)苯亚甲基)乙酰肼(10h)在20μg/m L的浓度下对T细胞蛋白酪氨酸磷酸酶(TCPTP)没有活性,显示了较好的选择性.  相似文献   
5.
合成了一系列新型的基于咔唑的单-/双-硫代碳酰腙衍生物.利用IR、1H NMR、13C NMR和元素分析对其进行了结构表征.评价了目标化合物对Cdc25B和PTP1B的抑制活性,讨论了其结构与活性的关系.实验结果显示,大部分目标化合物对Cdc25B和PTP1B表现出良好的抑制活性.其中,1,5-双[(9-戊基-3-咔唑基)亚甲基]硫代碳酰腙(4d)对Cdc25B的抑制活性最高,IC50为(0.23±0.02)μg/m L.1,5-双[(9-乙基-3-咔唑基)亚甲基]硫代碳酰腙(4a)对PTP1B的抑制活性最高, IC50为(1.00±0.16)μg/m L.对目标化合物4a和4d进行分子对接研究和密度泛函理论(DFT)计算,结果表明,目标化合物4d和4a分别进入到了Cdc25B和PTP1B酶的活性位点区域,有活性作用的主要是硫代碳酰腙和咔唑基团.  相似文献   
6.
合成出了一系列新型基于咔唑的单-/双-碳酰腙衍生物3和4.利用1H NMR、13C NMR、IR和元素分析对其进行了结构表征.评价了目标化合物对蛋白酪氨酸磷酸酶1B(PTP1B)的抑制活性,讨论了结构与活性的关系.实验结果显示,大部分化合物对PTP1B具有良好的抑制活性,其中1,5-双[(9-丁基-3-咔唑基)亚甲基]碳酰腙(4c)的抑制活性最高,IC50=(4.81±0.41)mmol/L,且活性高于对照药物齐墩果酸.对目标化合物1-[(9-庚基-3-咔唑基)亚甲基]碳酰腙(3f)和4c进行分子对接研究和密度泛函理论(DFT)计算.分子对接结果表明,化合物3f和4c结合到PTP1B酶由螺旋α3和α6形成的活性位点,与PTP1B酶通过氢键、极性、疏水和p-p等相互作用形成了稳定的复合物.  相似文献   
7.
蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素和瘦素信号转导通路的负调节因子,已成为治疗糖尿病和肥胖症的潜在靶标.为了寻找非磷酸酯类PTP1B抑制剂,设计、合成了一系列(E)-1-取代苯基-3-[4-((E)-(2-(4-苯基噻唑-2-基)腙)甲基)苯基]-2-丙烯-1-酮(4a~4n),并对化合物进行了PTP1B抑制活性测定.结果显示,所有化合物对PTP1B均显示出较强的抑制活性,其中化合物4h活性最佳,IC50为(2.57±0.50)μmol L-1.  相似文献   
8.
将自行合成的重要中间体2-氨基-5-取代-1,3,4-噻二唑(2)和2-氯硒基苯甲酰氯(6)反应,合成出了16个新颖的含苯并异硒唑酮结构的2,5-二取代-1,3,4-噻二唑衍生物7a~7p,利用IR,1H NMR和元素分析对目标产物进行了结构表征.评价了目标化合物的生物活性.实验结果表明,部分化合物具有抑制细胞分裂周期25 B磷酸酯酶(Cdc25B)的活性(IC50=1.67~6.66μmol·L-1).所有化合物对蛋白酪氨酸磷酸酯酶1B(PTP1B)均有抑制活性(IC50=0.73~4.50μmol·L-1),并且部分化合物的抑制活性高于阳性对照药物齐墩果酸(IC50=1.90μmol·L-1).化合物7k对人结肠癌(HCT-8)细胞具有体外抗肿瘤活性(IC50=12.54μmol·L-1).部分化合物对羟自由基(HO·)和超氧阴离子(O·-2)具有中等的清除能力,但对DPPH·均无清除能力.  相似文献   
9.
采用超声波辐射与固-液相转移催化联用技术合成出了一系列新型含咔唑基团的酰基硫脲衍生物3,利用IR、~1H NMR、~(13)C NMR和元素分析对其进行了结构表征.该合成方法具有反应时间短、操作简便、产率高等优点.对所合成的目标化合物进行了细胞分裂周期25B磷酸酶(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性筛选,实验结果显示,目标化合物3对Cdc25B均具有良好的抑制活性,部分化合物对PTP1B也表现出良好的抑制活性.其中1-(4-硝基苯甲酰基)-3-(9-乙基-咔唑-3-基)硫脲(3n)对Cdc25B的抑制活性最高[IC50=(0.49±0.12)mg/mL],1-(2-硝基苯甲酰基)-3-(9-乙基-咔唑-3-基)硫脲(3l)对PTP1B的抑制活性最高[IC50=(3.59±1.15)mg/m L].值得注意的是,化合物3n对Cdc25B和PTP1B均具有较高的抑制活性.分子对接的初步研究结果揭示了此类抑制剂的结构-活性关系.这些活性目标化合物是潜在的Cdc25B和PTP1B抑制剂,在癌症和糖尿病治疗方面具有很好的应用前景.  相似文献   
10.
合成了一系列新型含咔唑/苯并咪唑环的2,5-二取代-1,3,4-噻二唑酰胺衍生物.利用IR, ~1HNMR, ~(13)CNMR和元素分析对其进行了结构表征.评价了目标化合物对蛋白酪氨酸磷酸酶1B(PTP1B)和T细胞蛋白酪氨酸磷酸酶(TCPTP)的抑制活性,讨论了结构与活性的关系.实验结果显示,绝大多数化合物对PTP1B的抑制活性超过高度同源的TCPTP的抑制活性,其中2-(9-咔唑基亚甲基)-5-(3-氯苯甲酰氨基)-1,3,4-噻二唑(5c)对PTP1B的抑制活性最高[IC_(50)=(2.43±0.43)mg/mL], 2-(9-咔唑基亚甲基)-5-(4-甲基苯甲酰氨基)-1,3,4-噻二唑(5b)和化合物5c对PTP1B的抑制活性均高于阳性对照药物齐墩果酸.对目标化合物5c进行分子对接研究和密度泛函理论(DFT)计算.分子对接结果表明,5c与PTP1B酶通过形成氢键、疏水和p-p等相互作用形成稳定的复合物.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号