首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

2.
The effect of elastic anisotropy on the strain fields and confinement potentials in InAs/GaAs quantum dot (QD) nanostructures was investigated for an isolated dot and a stacked multi-layer dots using finite element analysis and model solid theory. The assumption of isotropy tends to underestimate especially hydrostatic strain that is known to modify confinement potentials in conduction band. Consideration of anisotropy results in a wider band gap and shallower potential well as compared with the isotropic model. Since the band gap and potential well depth would be related to opto-electronic properties of quantum dot systems via quantum mechanical effects, it is suggested that consideration of elastic anisotropy in the calculation of strains and band structures is necessary for the design of QD-based opto-electronic devices.  相似文献   

3.
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground stateof ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.  相似文献   

4.
Refractive indices and extinction coefficients of 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3(PMN-0.08PT) single crystal are investigated by variable angle spectroscopic ellipsometry (VASE) at different wavelengths. The parameters relative to the energy band structure are obtained by fitting to the single-oscillator dispersion equation, and the band gap energy is also deduced from the Tauc equation. Similar to most oxygen-octahedra ferroelectrics, PMN-0.08PT has the same dispersion behavior described by the refractive-index dispersion parameters.  相似文献   

5.
Co nanoparticles embedded in a BaTiO3 matrix, namely Co-BaTiO3 nano-composite films are grown on Mg(100) single crystal substrates by the pulsed laser deposition (PLD) method at 650℃. Optical properties of the CoBaTiO3 nano-composite films are examined by absorption spectra (AS) and photoluminescence (PL) spectra. The results indicate that the concentration of Co nano-particles strongly influences the electron transition of the Co BaTiO3 nano-composite films. The PL emission band ranging from 1.9 to 2.2eV is reported. The AS and PL spectra suggest that the band gap is in the range of 3.28-3.7eV.  相似文献   

6.
Mustafa Ö  ztas 《中国物理快报》2008,25(11):4090-4092
InP film samples were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas onto glass substrates at 500°C with different thicknesses of the films. It is found that the resistivity of the polycrystalline films strongly depends on the grain size. It is observed that the grain size of the films increase with the decrease of the energy band gap and strain of the film. The changes observed in the energy band gap and strain related to the film grain size of the films are discussed in detail.  相似文献   

7.
High resolution photoemission measurements are carried out on non-superconducting LaFeAsO parent com- pound and various superconducting RFeAs(O1-ZFx) (R=La, Ce and Pr) compounds. It is found that the parent LaFeAsO compound shows a metallic character. By extensive measurements, several common features are identified in the electronic structure of these Fe-based compounds: (1) 0.2 eV feature in the valence band, (2) a universal 13-16 meV feature, (3) near EF spectral weight suppression with decreasing temperature. These uni- versal features can provide important information about band structure, superconducting gap and pseudogap in these Fe-based materials.  相似文献   

8.
Pb1-x Srx Te thin films with different strontium (St) compositions axe grown on BaF2 (111) substrates by molecular beam epitaxy (MBE). Using high resolution x-ray diffraction (HPLXRD), we obtain Pb1-xSrxTe lattice constants, which vary in the range 6.462-6.492 A. According to the Vegard law and HRXRD data, Sr compositions in Pb1-xSrxTe thin films range from 0.0-8.0%. The Pb1-xSrxTe refractive index dispersions are attained from infrared transmission spectrum characterized by Fourier transform infrared (FTIR) transmission spectroscopy. It is found that refractive index decreases while Sr content increases in Pb1-xSrx Te. We also simulate the Pb1-xSrxTe transmission spectra theoretically to obtain the optical band gap energies which range between 0.320 e V and 0.449 e V. The simulated results are in good agreement with the FTIR data. Finally, we determine the relation between Pb1-xSrx Te band gap energies and Sr compositions (Eg = 0.320+0.510x-0.930x^2 +184x^3 (eV)).  相似文献   

9.
We propose a new method to form a novel controfiable photonic crystal with cold atoms and study the photonic band gap (PBG) of an infinite 1D CO2-laser optical lattice of SSRb atoms under the condition of quantum coherence. A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed. Using the eigenquation of defect mode, we calculate the defect mode when a defect is introduced into such a lattice. Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.  相似文献   

10.
Optical transmittance and reflectance on ferroelectric BaTi2O5 glasses prepared recently by a containerless synthesis technique are measured at room temperature in the wavelength range 190-800nm. The fundamental absorption edge located around 340nm demonstrates the colourless and transparent character of the glass. The optical band gap of 3.32eV has been estimated. The tail of the optical absorption near the fundamental absorption edge is found to follow the Urbach rule. Our analysis of the experimental spectra supports an indirect allowed interband transition between the valence band formed by O-2p orbitals and the conduction band formed by Ti-3d orbitals.  相似文献   

11.
Absorption spectra of BiSbO4 are studied. The electronic structure calculated by the DFT shows that BiSbO4 is a semiconductor, with direct band gap 2.96 eV, which is consistent with UV-visible diffuse reflectance experiment. The host lattice emission band is located at 440 nm under VUV excitation. Eu^3+ and Pr^3+ doped samples have high luminescence efficiency in emitting red and green light, respectively. From the partial density of states, Eu^3+ doped emitting spectrum, and the host crystal structure parameters, the relationship between structure and optical properties is discussed. It is found that the Eu^3+ ions occupied Bi^3+ sites, and there could be an energy transfer from Bi^3+ ions to RE^3+ ions.  相似文献   

12.
 本文采用在位的(in situ)高压X光衍射方法研究了近50 GPa和室温下三方结构NiO的等温压缩行为,并用Murnaghan状态方程对实验值进行了最小二乘法拟合,得到的NiO室温状态方程的相应参量分别为:B0=223 GPa,B0'=4.21。在室温压力范围内没有观察到第一类结构相变。NiO在六方指标下的轴比c/a随压力的变化在实验压力范围内可用c/a=2.450~1.569×10-3(GPa)近似描述。  相似文献   

13.
The electronic structure of the new superconductor SmO1-xFxFeAs (x=0.15) is studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative flat distribution of the density of states between 0.5eV and 3eV binding energy, which agrees well with the band structure calculations considering an antiferromagnetic ground state. No noticeable gap opening is observed at 12K below thesuperconducting transition temperature, indicating the existence of large ungapped regions in the Brillouin zone.  相似文献   

14.
Ta2O5 films axe deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2 O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer (XRD) results. X-ray photoelectron spectroscopy (XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2 O5 film achieves the highest laser induced damage threshold (LIDT) either at 355 or 1064nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.  相似文献   

15.
Three-dimensional SiO2 photonic crystals (PhCs) are fabricated on quartz substrates by the vertical deposition method. Scanning electron microscopy measurement reveals that the samples exhibit an ordered close-packed arrangement of SiO2 spheres. It is found that the position of the [111] photonie band gap (PBG) shifts to a long wavelength (red shift) with increasing sphere size. Gap broadening effects are observed due to the presence of defects in the samples. Moreover, the optical properties of the PBG are very sensitive to the annealing temperature. Our results indicate that the optical properties of the PBG can be easily tuned in the visible region by appropriate experimental parameters, which will be useful for practical applications of PhC optical devices.  相似文献   

16.
We fabricate a photonic crystal microcavity containing Alq3 in a sandwiched structure by the self-assemble method. The angle-dependent photoluminescence (PL) spectra and the variation of the PL lifetime demonstrate the effect of the photonic band gap on the spontaneous emission of Alq3 in the photonic crystals.  相似文献   

17.
The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...  相似文献   

18.
Two-dimensional (2D) photonic band gaps (PBG) structure fabricated from anisotropic dielectric is studied by solving Maxwell's equations with use of plane-wave expansion method. Numerical simulations show that absolute photonic band gaps can be substantially improved in two dimensional square and triangular lattices of cylinders by introducing anisotropy in material dielectricity. Owing to different refractive indices for electromagnetic waves with E- and H-polarization, the quasi-independent adjustment of band gaps for the E- and H-polarization modes can be implemented by uniaxial crystals with their extraordinary axis parallel to the cylinders. Large absolute band gaps can be created for uniaxial cylinders in air with a positive anisotropy. In the case of air holes in background uniaxial dielectric with even a weak negative anisotropy, the absolute band gap can be increased 2-3 times. Large absolute band gap can also be obtained in other complex configurations of uniaxial and biaxial materials and this enables a full exploitation of potential utilization for anisotropic materials available in nature. Such a mechanism of band gap adjustment should open up a new scope for designing band gaps in 2D PBG structures. Received 26 January 1999  相似文献   

19.
杜宇雷 《中国物理快报》2009,26(11):168-170
We perform a first-principles study on the electronic structure and elastic properties of TiaA1C with an antiperovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti3AlC are derived yielding c11 = 356 GPa, c12 = 55 GPa, c44 = 157 GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342 GPa, respectively. These properties are compared with those of Ti3AlC2 and Ti2AlC with a layered structure in the Ti-Al-C system and FeaAlC with the same antiperovskite structure.  相似文献   

20.
The mechanical and electronic properties of P3m1-BCN have been studied by using first principles calculations. The anisotropy studies of Young's modulus, shear modulus and Poisson's ratio show that P3m1-BCN exhibits a large anisotropy. Electronic structure study shows that P3m1-BCN is an indirect semiconductor with band gap of 4.10 eV. Unusually, the band gap of P3m1-BCN increase with increasing pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号