首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 155 毫秒
1.
We investigate the luminescence properties of Bi^3+ and RE^3+ (RE = Tb or Eu) in a Y3Ga5O12 (YGG) host system. The additional doping of Bi^3+ can enhance the luminescence of Th^3+ or Eu^3+ in this host. Energy transfer from Bi^3+ to Tb^3+ and Eu^3+ is observed and the mechanism of energy transfer is investigated. Mechanism of energy transfer can be explained as electric multipole interaction since the Bi^3+ emission band and Tb^3+ or Eu^3+ excitation band overlaps and the Bi^3+ emission intensity decreases while the intensity of Tb^3+ or Eu^3+ increases with the increase of Tb^3+ or Eu^3+ concentration. Therefore, Bi^3+ ion is a kind of efficient sensitizer to the Tb^3+ and Eu^3+ activators in the Y3Ga5O12 host.  相似文献   

2.
We report the photoluminescence(PL) of Eu^3+-doped glass with Bi^3+as a sensitizer. The specific glass system with the strong enhancement of the red emission of Eu3+is obtained by adding a small number of Bi3+ions instead of increasing the Eu^3+ concentration. The emission band of Bi3+overlaps with the excitation band of Eu^3+ and the lifetime decay curves,resulting in a very efficient energy transfer from Bi^3+ to Eu^3+. The probability of energy transfer is strongly dependent on Bi^3+ concentration. In addition, the intensity of 4f–4f transition is much stronger than that of a charge-transfer(CT) band in the excitation spectrum, which indicates that the Na2O–Ca O–Ge O2-Si O2 glass is a suitable red-emitting phosphor with high stability as a candidate for light-emitting diodes(LEDs).  相似文献   

3.
Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated. The NIR emission of Er^3+ ions at 1531 nm is enhanced threefold by the addition of 7 mol% Bi^3+. Bi^3+doping results in the formation of exciton in YAG and the variation in the local environment of the doped rare-earth ions. The enhancement in NIR luminescence is ascribed to the combined effects of the sensitization of exciton→Ce^3+ →Er^3+ and the Bi^3+ doping-induced adjustment of the local environment for Ce^3+ and Er^3+ ions.  相似文献   

4.
The possible defect models of Y^3+:PbWO4 crystals are discussed by defect chemistry and the most possible substituting positions of the impurity Y^3+ ions are studied by using the general utility lattice program (GULP). The calculated results indicate that in the lightly doped Y^3+ :PWO crystal, the main compensating mechanism is [2Ypb^+ + VPb^2-], and in the heavily doped Y^3+ :PWO crystal, it will bring interstitial oxygen ions to compensate the positive electricity caused by YPb^+, forming defect clusters of [2Ypb^+ +Oi^2-] in the crystal. The electronic structures of Y3+ :PWO with different defect models are calculated using the DV-Xα method. It can be concluded from the electronic structures that, for lightly doped cases, the energy gap of the crystal would be broadened and the 420nm absorption band will be restricted; for heavily doped cases, because of the existence of interstitial oxygen ions, it can bring a new absorption band and reduce the radiation hardness of the crystal.  相似文献   

5.
Sr2ScAlO5:Eu^2+, a red oxide phosphor with a perovskite-type structure, has been synthesized through a solid-state reaction and its luminescence properties have been investigated. An absorption band centering at 450 nm is observed from the diffuse reflection spectra and the excitation spectra, indicating that the phosphor can match perfectly with the blue light of InGaN light-emitting diodes. A broad red emission band at 620 nm is found from the emission spectra, originating from the 4f^65d-4f^7 transition of the Eu^2+ ions. The best doping content of Eu in this material is about 5%. S Sr2ScAlO5:Eu^2+ is a highly promising red phosphor for use in white light-emitting diodes.  相似文献   

6.
The samples of europium ions doped titanium dioxide (Eu^3+/TiO2) nanocrystals are synthesized by a modified sol-gel method with hydrothermal treatment. The x-ray diffraction and scanning electron microscopy are used to characterize the sample. The temperature-dependent fluorescence emission effect of Eu^3+-doped samples is investigated. It is found that under the excitation of 514.5nm light, the emission intensity of Eu^3+ reaches a maximum value at 450K among various Eu^3+ dopant concentrations in Eu^3+ /TiO2 nanocrystals. The variation of the emission intensity may be attributed to the photon-assist absorption and the temperature-quenching effect.  相似文献   

7.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

8.
The emission at 1530nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaFa-AIF3-NaF (ZBLAN) glass doped by Er^3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 153Onto increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.  相似文献   

9.
Bi^3+ doped YB03 phosphors are prepared by solid state reaction and their luminescent properties are investi- gated by using synchrotron radiation instrument, Concentration and temperature dependences of YBO3:Bi3+ luminescence under VUV/UV excitation is observed, The emission and excitation spectra are assigned, and the mechanism for these phenomena is explored, which result from the energy transfer between Bi^3+ ions occupying different sites in YB03 crystal lattice.  相似文献   

10.
In this paper, optical spectra of LiYF4 single crystals doped with Tm3+ ions of various concentrations are reported. The emission intensity at 1.8 ktm first increases with increasing Tm3+ concentration, and reaches a maximum value when the concentration of Tm3+ is about 1.28 mol%, then it decreases rapidly as the concentration of Tm3+ further increases to 3.49 mol%. The emission lifetime at 1.8 p.m also shows a similar tendency to the emission intensity. The maximum lifetime of 1.8 μm is measured to be 17.68 ms for the sample doped with Tm3+ of 1.28 mol%. The emission cross section of 3F4 level is calculated. The maximum reaches 3.76 × 10 -21 cm2 at 1909 nm. The cross relaxation (3H6, 3H4 →3 F4, 3F4) between Tm3+ ions and the concentration quenching effect are mainly attributed to the change of emission with Tm3+ concentration. The largest quantum efficiency between Tm3+ ions is estimated to be ,-147% from the measured lifetime and calculated radiative lifetime. All the results suggest that the Tm3+/LiYF4 single crystal may have potential applications in 2 μm mid-infrared lasers.  相似文献   

11.
The novel vacuum ultraviolet (VUV) excited Na3 Y9O3 (BO3)8:Tb^3+ (NYOB:Tb^3+) green phosphor is prepared. Strong VUV photoluminescence and high quenching concentration of Tb^3+ (20 wt%) are observed in NYOB: Tb^3+ and the strong emission are correlated with the unique layer-type structure of NYOB. All the characteristic 4 f - 5d transitions of Tb^3+ and the host absorption band in VUV region are identified in the excitation spectrum. Based on the results, the energy levels scheme of Tb^3+ in NYOB:Tb^3+ is first established. This newly developed NYOB:Tb^3+ phosphor shows excellent optical properties when compared with the commercial Zn2SiO4:Mn^2+ and would be a potential VUV-excited green phosphor.  相似文献   

12.
LiSrBO3 :Eu3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eua+ concentration on the emission spectrum of LiSrBO3:Eu3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipoledipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3 :Eua+ phosphor are enhanced.  相似文献   

13.
The doubly doped (Bi3+ and Eu3+) GdVO4 powder is synthesized by hydrolyzed colloid reaction (HCR) technique and formation of material is confirmed by XRD measurement. Surface morphology has been studied by SEM measurement and the result shows uniform surface morphology. The average particle size observed by SEM is about 1 7m. The Fritsch particle sizer is used to study the particle size distribution. It distributes from O.15 to 3.57 7m. The small particle size (less than 5 7m) and the narrow particle size distribution, are the necessary requirements of good phosphor material. Photoluminescence result shows a narrow emission line of Eu3+ ion (4 nm FWHM) at 618 nm. The Eu3+ emission intensity is enhanced by a factor of five with the addition of small amount of Bi3+. The emission bands of VO43- and Bi3+ partially overlap with the excitation band of Eu3+. The process of energy transfer from Bi3+ to Eu3+ is discussed here. The energy transfer probability is strongly dependent upon the Bi3+ and Eu3+ concentrations, with a maximum for 0.2 mol % of Bi3+ and 3 mol % of Eu3+. It drastically decreases for higher concentrations. For photoluminescent applications, the quantum efficiency (QE) of a phosphor material is an important parameter. The QE of GdVO4:Bi,Eu(0.2,3) is 76%. The GdVO4:Bi,Eu(0.2,3) material is proposed as an efficient photoluminescent phosphor.  相似文献   

14.
韦先涛  赵江波  陈永虎  尹民  李勇 《中国物理 B》2010,19(7):77804-077804
Bi~(3+) and Yb~(3+) codoped cubic Y2O3 phosphors are prepared by pechini sol-gel method.Strong near-infrared (NIR) emission around 980 nm from Yb~(3+)(2F5/2 → 2F7/2) is observed under ultraviolet light excitation.A broad excitation band ranging from 320 to 360 nm,owing to the 6s 2 →6s6p transition of Bi~(3+) ions,is recorded when the Yb~(3+) emission is monitored,which suggests a very efficient energy transfer from Bi~(3+) ions to Yb~(3+) ions.The Yb~(3+) concentration dependences of both the Bi~(3+) and the Yb~(3+) emissions are investigated.The decay curve of Bi ~(3+) emission under the excitation of 355 nm pulse laser is used to explore the Bi~(3+) →Yb~(3+) energy transfer process.Cooperative energy transfer (CET) is discussed as a possible mechanism for the near-infrared emission.  相似文献   

15.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

16.
Solid solutions of vanadates of formula BixLn1−xVO4 (Ln=Y, Gd) doped with Eu3+ or Sm3+ ions have been synthesized by solid-state reactions. Intense red/orange-red luminescence is obtained in these samples on excitation in the broad charge-transfer band in the near UV. The excitation in the Eu3+ levels leads to much less intense red emission. These materials could find applications as red phosphors for solid-state white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号