首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.  相似文献   

2.
Large-area monolayer graphene samples grown on polycrystalline copper foil by thermal chemical vapor deposition with differing CH4 flux and growth time are investigated by Raman spectra, scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The defects, number of layers, and quality of graphene are shown to be controllable through tuning the reaction conditions: ideally to 2–3 sccm CH4 for 30 minutes.  相似文献   

3.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

4.
Li–N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%–5 at.% were grown on a glass substrate using an ion beam enhanced deposition(IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site(LiZn) acceptor. N doping in ZnO can forms the Lii–NOcomplex, which depresses the compensation of Li occupy interstitial site(Lii) donors for LiZnacceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak(381 nm) is due to the shallow acceptors LiZnin the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping.  相似文献   

5.
Graphene on gallium nitride(GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5–6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1Ω/square,which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.  相似文献   

6.
The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the A1 atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-A1N, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure.  相似文献   

7.
Nonpolar (1120) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.  相似文献   

8.
仇洪波  李惠琪  刘邦武  张祥  沈泽南 《中国物理 B》2014,23(2):27301-027301
The influence of atomic layer deposition parameters on the negative charge density in AlOx film is investigated by the corona-charge measurement. Results show that the charge density can reach up to -1.56×10^12 cm%-2 when the thickness of the film is 2.4 nm. The influence of charge density on cell conversion efficiency is further simulated using solar cell analyzing software (PC1D). With AlOx passivating the rear surface of the silicon, the cell efficiency of 20.66% can be obtained.  相似文献   

9.
The behavior of ion-beam-induced crystallization of a buried amorphous layer created by means of MeV Si+ irradiation at 300℃ in Si(100) was studied by Rutherford backscattering and channeling technique. Sohd phase epitaxial crystallizations occurred from both the front and the back amorphous-crystalline(a/c) interfaces with the growth thickness being increased linearly with increasing dose of the annealing ion beam, Nuclear energy deposition was proved to play a dominant role in the process of ion-beam-induced crystallization. The high density of electronic excitation, which could enhance defect production near or at the a/c interface, may thus enhance the nuclearly normalized growth rate of ion-beam-induced crystallization at the front a/c interface.  相似文献   

10.
In this paper the endurance characteristics and trap generation are investigated to study the effects of different postdeposition anneals (PDAs) on the integrity of an Al2O3/Si3N4/SiOz/Si memory gate stack. The flat-band voltage (Vfb) turnarounds are observed in both the programmed and erased states of the N2-PDA device. In contrast, this turnaround is observed only in the erased state of the O2-PDA device. The Vfb in the programmed state of the O2-PDA device keeps increasing with increasing program/erase (P/E) cycles. Through the analyses of endurance characteristics and the low voltage round-trip current transients, it is concluded that in both kinds of device there are an unknown type of pre-existing characteristic deep traps and P/E stress-induced positive oxide charges. In the O2-PDA device two extra types of trap are also found: the pre-existing border traps and the P/E stress-induced negative traps. Based on these four types of defects we can explain the endurance characteristics of two kinds of device. The switching property of pre-existing characteristic deep traps is also discussed.  相似文献   

11.
The low temperature sample stage in a transmission electron microscope is used to investigate the charge ordering behaviours in a Bi0.4Ca0.6MnO3 film with a thickness of 110 nm at 103 K. Six different types of superlattice structures are observed using the selected-area electron diffraction (SAED) technique, while three of them match well with the modulation stripes in high-resolution transmission electron microscopy (HRTEM) images. It is found that the modulation periodicity and direction are completely different in the region close to the Bi0.4Ca0.6MnO3/SrTiO3 interface from those in the region a little further from the Bi0.4Ca0.6MnO3/SrTiO3 interface, and the possible reasons for this are discussed. Based on the experimental results, structural models are proposed for these localized modulated structures.  相似文献   

12.
Highly crystalline and transparent CdS films are grown by utilizing the vacuum thermal evaporation (VTE) method. The structural, surface morphological, and optical properties of the films are studied and compared with those prepared by chemical bath deposition (CBD). It is found that the films deposited at a high substrate temperature (200 ℃) have a preferential orientation along (002) which is consistent with CBD-grown films. Absorption spectra reveal that the films are highly transparent and the optical band gap values are found to be in a range of 2.44 eV-2.56 eV. Culnl_xGaxSe2 (CIGS) solar cells with in-situ VTE-grown CdS films exhibit higher values of Voc together with smaller values of Jsc than those from CBD. Eventually the conversion efficiency and fill factor become slightly better than those from the CBD method. Our work suggests that the in-situ thermal evaporation method can be a competitive alternative to the CBD method, particularly in the physical- and vacuum-based CIGS technology.  相似文献   

13.
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).  相似文献   

14.
This paper studies the projectile electron loss cross sections of C^3+ colliding with atomic hydrogen in the frame work of extended over-barrier model at intermediate velocities (25 keV/u-600 keV/u). The electron loss is calculated in terms of the interaction between the screened target nucleus and the active projectile electron and of the interaction between projectile electron and target electron. Compared with the convergent close-coupling calculations, screening and anti-screening calculations, this model satisfactorily reproduces the experimentally obtained energy dependence of the electron-impact ionisation cross sections and the single electron loss cross sections over the energy range investigated here.  相似文献   

15.
This paper reports that a simple chemical vapour deposition method has been adopted to fabricate large scale, high density boron nanocones with thermal evaporation of B/B2O3 powders precursors in an Ar/H2 gas mixture at the synthesis temperature of 1000-1200℃. The lengths of boron nanocones are several micrometres, and the diameters of nanocone tops are in a range of 50-100 nm. transmission electron microscopy and selected area electron diffraction indicate that the nanocones are single crystalline α-tetragonal boron. The vapour liquid solid mechanism is the main formation mechanism of boron nanocones. One broad photolumineseence emission peak at the central wavelength of about 650 nm is observed under the 532 nm light excitation. Boron nanocones with good photoluminescence properties are promising candidates for applications in optical emitting devices.  相似文献   

16.
Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree.  相似文献   

17.
Superconductor-ferromagnetic in-plane nanocontacts have been created with focused-electron/ion-beam-induced deposition techniques for studies of Andreev Reflection. The final resistance of the nanocontact is tuned during the growth by in situ resistance measurements. The results show that Co nanodeposits grown with focused electron beam have large spin polarization (∼35%), making this nanomaterial of great potential for use in Spin Electronics applications. The experiments have also allowed the determination of the superconducting gap of the W-based nanodeposits grown with focused ion beam.  相似文献   

18.
冀东  刘冰  吕燕伍  邹杪  范博龄 《中国物理 B》2012,21(6):67201-067201
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

19.
An ultra-high vacuum(UHV) compatible electron spectrometer employing a double toroidal analyzer has been developed. It is designed to be combined with a custom-made scanning tunneling microscope(STM) to study the spatially localized electron energy spectrum on a surface. A tip–sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite(HOPG) is employed to test the performance of the spectrometer.Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of-140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.  相似文献   

20.
This paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with H$_{2}$ prior to plasma ignition, and selecting proper discharging time after silane flow injection. Material prepared under these conditions at a deposition rate of 0.78\,nm/s maintains higher crystallinity and fine electronic properties. By H-plasma treatment before i-layer deposition, single junction $\mu $c-Si:H solar cells with 5.5{\%} efficiency are fabricated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号