首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.  相似文献   

2.
A 5.35-μm-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) u-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction 0 - 20 scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.  相似文献   

3.
This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consists of a high-temperature (HT) A1N layer and a low-temperature (LT) A1N layer grown at 800℃ and 600℃, respectively. It is demonstrated that the HT-A1N layer can result in the growth of GaN epilayer in Ga-polarity and the LT-A1N layer is helpful for the improvement of the epilayer quality. It is observed that the carrier mobility of the GaN epilayer increases from 458 to 858cm^2/V.s at room temperature when the thickness of LT-A1N layer varies from 0 to 20nm. The full width at half maximum of x-ray rocking curves also demonstrates a substantial improvement in the quality of GaN epilavers by the utilization of LT-A1N layer.  相似文献   

4.
This paper reports on N-, mixed-, and Ga-polarity buffer layers are grown by molecular beam epitaxy (MBE) on sapphire (0001) substrates, with the GaN thicker films grown on the buffer layer with different polarity by hydride vapour epitaxy technique (HVPE). The surface morphology, structural and optical properties of these HVPE-GaN epilayers are characterized by wet chemical etching, scanning electron microscope, x-ray diffraction, and photoluminescence spectrum respectively. It finds that the N-polarity film is unstable against the higher growth temperature and wet chemical etching, while that of GaN polarity one is stable. The results indicate that the crystalline quality of HVPE-GaN epilayers depends on the polarity of buffer layers.  相似文献   

5.
郭浩民  文龙  赵志飞  步绍姜  李新化  王玉琦 《中国物理 B》2012,21(10):108101-108101
We investigated the quantum dots-templated growth of a(0001) GaN film on a c-plane sapphire substrate.The growth was carried out in a radio-frequency molecular beam epitaxy system.The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images,as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the AlN buffer.The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra.The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves.Meanwhile,the threading dislocation density in the quantum dots-templated film was estimated to be 7.1×107cm-2,which was significantly suppressed compared with that of the AlN-buffered GaN film.The roomtemperature Hall measurement showed an electron mobility of up to 1860cm2 /V·s in the two-dimensional electron gas at the interface of the Al 0.25Ga0.75 N/GaN heterojunction.  相似文献   

6.
<正>A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method,the Si_xN_y interlayer which is deposited on an A1N buffer layer in situ is introduced to grow the GaN film laterally.The crack-free GaN film with thickness over 1.7 micron is successfully grown on an Si(111) substrate. A synthesized GaN epilayer is characterized by X-ray diffraction(XRD),atomic force microscope(AFM),and Raman spectrum.The test results show that the GaN crystal reveals a wurtzite structure with the(0001) crystal orientation and the full width at half maximum of the X-ray diffraction curve in the(0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an Si_xN_y interlayer.In addition,Raman scattering is used to study the stress in the sample.The results indicate that the Si_xN_y interlayer can more effectively accommodate the strain energy.So the dislocation density can be reduced drastically,and the crystal quality of GaN film can be greatly improved by introducing an Si_xN_y interlayer.  相似文献   

7.
We report the reduced-strain gallium-nitride (GaN) epitaxial growth on (0001) oriented sapphire by using quasiporous GaN template. A GaN film in thickness of about 1 μm was initially grown on a (0001) sapphire substrate by molecular beam epitaxy. Then it was dealt by putting into 45% NaOH solution at 100℃ for lOmin. By this process a quasi-porous GaN film was formed. An epitaxial GaN layer was grown on the porous GaN layer at 1050℃ in the hydride vapour phase epitaxy reactor. The epitaxial layer grown on the porous GaN is found to have no cracks on the surface. That is much improved from many cracks on the surface of the GaN epitaxial layer grown on the sapphire as the same as on GaN buffer directly.  相似文献   

8.
The controlled growth of Zn-polar ZnO fihns on Al-terminated α-Al203 (0001) substrates is investigated by the radio-frequency plasma-assisted molecular beam epitaxy method. Prior to the growth, α-Al2O3 (0001) surface is modified by an ultrathin MgO layer, which serves as a uniform template for epitaxy of Zn-polar ZnO films. The microstructures of ZnO/MgO/Al2O3 interface are investigated by in-situ reflection high-energy electron diffraction observations and ex-situ high-resolution transmission electron microscopy characterization. It is found that under Mg-rich condition, the achievement of the wurtzite MgO ultrathin layer plays a key role in the subsequent growth of Zn-polar ZnO. An interracial atomic model is proposed to explain the mechanism of polarity selection of both MgO and ZnO films.  相似文献   

9.
A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 2Onto low-temperature-deposited AlN buffer at a low V/Ⅲ flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.  相似文献   

10.
The growth of the InAs film directly on the Si substrate deflected from the plane(100) at 4° towards(110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the electron mobility and surface topography has been investigated for a set of samples. The results show that the highest electron mobility is4640 cm~2/V·s in the sample, in which the 10-nm InAs nucleation layer is grown at a low temperature of 320 ℃ followed by ramping up to 560 ℃, and the nucleation layer was annealed for 15 min and the second layer of InAs is grown at 520 ℃.The influence of different buffer layers on the electron mobility of the samples has also been investigated, which shows that the highest electron mobility of 9222 cm~2/V·s at 300 K is obtained in the sample grown on a thick and linearly graded InGaAlAs metamorphic buffer layer deposited at 420 ℃.  相似文献   

11.
李述体  曹健兴  范广涵  章勇  郑树文  苏军 《中国物理 B》2010,19(10):107206-107206
The growth of GaP layer on GaN with and without buffer layers by metal-organic chemical vapour deposition (MOCVD) has been studied. Results indicate that the GaP low temperature buffer layer can provide a high density of nucleation sites for high temperature (HT) GaP growth. These sites can promote the two-dimensional (2D) growth of HT GaP and reduce the surface roughness. A GaP single crystal layer grown at 680°C is obtained using a 40-nm thick GaP buffer layer. The full-width at half-maximum (FWHM) of the (111) plane of GaP layer, measured by DCXRD, is 560 arcsec. The GaP layer grown on GaN without low temperature GaP buffer layer shows a rougher surface. However, the FWHM of the (111) plane is 408 arcsec, which is the indication of better crystal quality for the GaP layer grown on GaN without a low temperature buffer layer. Because it provides less nucleation sites grown at high growth temperature, the three-dimensional (3D) growth is prolonged. The crystalline quality of GaP is lightly improved when the surface of GaN substrate is pretreated by PH3 , while it turned to be polycrystalline when the substrate is pretreated by TEGa.  相似文献   

12.
A GaN interlayer between low temperature (LT) A1N and high temperature (PIT) A1N is introduced to combine HT AIN, LT A1N and composition-graded A1GaN as a novel buffer layer for GaN films grown on Si (111) substrates. The crystal quality, surface morphology and strain state of the GaN film with this new buffer are compared with those of GaN grown on a conventional buffer structure. By changing the thickness of LT A1N, the crystal quality is optimized and the crack-free GaN film is obtained. The in-plane strain in the GaN film can be changed from tensile to compressive strain with the increase in LT A1N thickness.  相似文献   

13.
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.  相似文献   

14.
We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a CaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm^2/V·s with a residual electron concentration of 5.7 × 10^18 cm^-3. THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.  相似文献   

15.
A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy (SSMBE) equipment was presented. The structural and electronic properties of the samples were characterized by reflection high energy diffraction (RHEED), X-ray diffraction Φ scans, Raman spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results of the RHEED and Φ scan, as well as the Raman spectra, showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate. The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing. The layer number of the graphene was between four and five, and the thickness of the unreacted SiC layer was about 1--1.5 nm.  相似文献   

16.
Semi-insulating GaN is grown by using a two-step A1N buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 10^13 Ω/sq by using two-step A1N buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 10^13 Ω/sq is due to inserting an insulating buffer layer (two-step A1N buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step A1N buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.  相似文献   

17.
This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.  相似文献   

18.
Systematic investigations are performed on a set of AlxGa1-xN/GaN heterostructures grown by metalorganie chemical vapor deposition on sapphire (0001). The Al composition x is determined by Rutherford backseattering. By using high resolution x-ray diffraction and the channeling scan around an off-normal (1213) axis in {1010} plane of the AlGaN layer, the tetragonal distortion eT csused by the elastic strain in the epilayer is determined. The results show that eT in the high-quality AlGaN layers is dramatically influenced by the Al content.  相似文献   

19.
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAsSb on (100) GaSb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17μm in wavelength. The surface of InAsSb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAsSb film shows to be of n-type conduction with an electron concentration of 8.52×1016cm-3.  相似文献   

20.
<正>In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double AlN buffer layers.The buffer layer consists of a low-temperature(LT) AlN layer and a high-temperature(HT) AlN layer that are grown at 600℃and 1000℃,respectively.It is observed that the thickness of the LT-AlN layer drastically influences the quality of GaN thin film,and that the optimized 4.25-min-LT-AlN layer minimizes the dislocation density of GaN thin film.The reason for the improved properties is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号