首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 176 毫秒
1.
采用高压射频等离子体增强化学气相沉积方法在非晶和微晶两种n型硅薄膜衬底上沉积了一系列不同厚度的本征微晶硅薄膜,研究了不同n型硅薄膜对本征微晶硅薄膜的表面形貌、晶化率和结晶取向等结构特性的影响.结果表明,本征微晶硅薄膜结构对n型掺杂层具有强烈的依赖作用,微晶n型掺杂层能够有效减少n/i界面非晶孵化层的厚度,改善本征微晶硅薄膜的纵向均匀性,进而提高微晶硅n-i-p太阳电池性能. 关键词: 孵化层 微晶硅薄膜 纵向均匀性 n-i-p太阳电池  相似文献   

2.
卢鹏  侯国付  袁育杰  杨瑞霞  赵颖 《物理学报》2010,59(6):4330-4336
采用射频化学气相沉积法,制备了一系列具有不同晶化率n型掺杂层的n-i-p结构微晶硅薄膜太阳电池.发现本征层的结构很大程度上依赖于n型掺杂层的结构,特别是n/i界面处的孵化层厚度以及本征层的晶化率.该系列太阳电池在100 mW/cm2的白光下照射400 h,实验结果证实了本征层晶化率最大(Xc(i)=65%)的电池性能表现出最低的光致衰退率.拥有非晶/微晶过渡区n型掺杂层的电池(本征层晶化率Xc(i)=54%)分别 关键词: 微晶硅 n-i-p结构太阳电池 光致衰退 晶化率  相似文献   

3.
报道了采用高压射频等离子体增强化学气相沉积(RF-PECVD) 制备高效率单结微晶硅电池和非晶硅/微晶硅叠层电池时几个关键问题的研究结果, 主要包括: 1)器件质量级本征微晶硅材料工艺窗口的确定及其结构和光电性能表征; 2)孵化层的形成机理以及减小孵化层的有效方法; 3)氢稀释调制技术对本征层晶化率分布及其对提高电池性能的作用; 4)高电导、高晶化率的微晶硅p型窗口层材料的获得, 及其对减小微晶硅电池p/i界面孵化层厚度和提高电池性能的作用等. 在解决上述问题的基础上, 采用高压RF-PECVD制备的单结微晶硅电池效率达8.16%, 非晶硅/微晶硅叠层电池效率11.61%.  相似文献   

4.
太阳电池用本征微晶硅材料的制备及其结构研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用VHF-PECVD技术制备了系列不同硅烷浓度和反应气压的微晶硅薄膜.运用拉曼散射光谱和 x射线衍射对制备的材料进行了结构分析.在实验研究的范围内,制备材料的晶化程度随硅烷 浓度的增加而降低.XRD的测试结果表明:制备的微晶硅材料均体现了(220)方向择优.应用在 电池的有源层中,制备出了效率达7.1%的单结微晶硅太阳电池,电池的结构是glass/ZnO/p( μc-Si:H)/i(μc-Si:H)/n(a-Si:H/Al),没有ZnO背反射电极,有源层的厚度仅为1.2μm. 关键词: 本征微晶硅薄膜 拉曼光谱 x射线衍射  相似文献   

5.
采用单室等离子体化学气相沉积技术沉积pin微晶硅电池时,硼污染降低了本征材料的晶化率并影响了p/i界面特性.针对该问题文中采用p种子层技术,即在沉积p层后采取高的H2/SiH4比率及适当的功率又沉积一个薄的p层,初步研究了p种子层对微晶硅i层纵向均匀性及电池性能的影响.实验结果表明:采用此方法能改善p/i界面特性,提高本征材料纵向结构的均匀性并降低硼对本征层的污染,有效地提高单结微晶硅电池的性能.最后,通过优化沉积条件,制备得到光电转换效率为881%(1 cm 关键词: 单室 甚高频等离子体增强化学气相沉积 微晶硅太阳电池 p种子层  相似文献   

6.
在采用高压高功率的甚高频等离子体增强化学气相沉积(VHF-PECVD)技术高速沉积微晶硅(μc-Si:H)太阳电池过程中,产生的高能离子对薄膜表面的轰击作用会降低薄膜质量和破坏p型掺杂层(p层)与本征层(i层)之间的界面特性.针对该问题提出在电池中引入低速沉积的p/i界面层的方法,即在p层上先低速沉积一薄层本征μc-Si:H薄膜,然后再高速沉积本征μc-Si:H薄膜.实验结果表明,引入低速方法沉积的界面层有效地提高了p/i界面特性和i层微结构的纵向均匀性,而随界面层厚度的增加,i层中的缺陷态先降低后增加, 关键词: μc-Si:H太阳电池 甚高频等离子体增强化学气相沉积 p/i界面层  相似文献   

7.
硼对沉积本征微晶硅薄膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术制备了不同腔室环境下的微晶硅薄膜.对单室沉积掺杂层p材料后遗留在腔室中的硼对本征微晶i材料电学特性和结构特性的影响进行了详细研究.测试结果表明:单室沉积p层后的硼降低了微晶i层材料的暗电导,增加了材料的光敏性;由于硼对i层污染程度的不同,使得材料的激活能发生了变化;腔室中残余的硼也导致微晶硅薄膜的结晶状况恶化,同时弱化了材料的(220)择优取向.而在较高功率和较强氢稀释下制备的晶化率较高,(220)晶向明显择优的材料受硼污染影响相对减小. 关键词: 单室 甚高频等离子体增强化学气相沉积 微晶硅 硼  相似文献   

8.
肖友鹏  高超  王涛  周浪 《物理学报》2017,66(15):158801-158801
太阳电池可看成由光子吸收层和接触层两个基本单元组成,接触层是高复合活性金属界面和光子吸收层之间的区域.为了进一步提高硅太阳电池的转换效率,关键是降低光子吸收层和接触之间的复合损失.近年来,载流子选择性接触引起了光伏界的研究兴趣,其被认为是接近硅太阳电池效率理论极限的最后的障碍之一.本文分析了三种类型的载流子选择性接触:在光子吸收层与金属界面之间引入薄的重掺杂层,即所谓的发射极或背面场;利用两种材料之间的导带或价带对齐;利用高功函数的金属氧化物与晶硅接触从而在晶硅中感应能带弯曲.基于一维太阳电池模拟软件wx AMPS,模拟了扩散同质结硅太阳电池[结构为(p~+)c-Si/(n)c-Si/(n~+)c-Si]、非晶硅薄膜硅异质结太阳电池[结构为(p~+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n~+)a-Si]和氧化物薄膜硅异质结太阳电池[结构为(n)MoO_x/(n)c-Si/(n)TiO_x]暗态下的能带结构和载流子浓度的空间分布,其中c-Si为晶硅;a-Si为非晶硅;(i),(n)和(p)分别表示本征、n型掺杂和p型掺杂.模拟结果表明:载流子选择性接触的核心是在接触处晶硅表面附近形成载流子浓度空间分布的不对称进而使得电导率的不对称,形成了对电子的高阻和空穴的低阻或者对空穴的高阻和电子的低阻,从而让空穴轻松通过同时阻挡电子,或者让电子轻松通过同时阻挡空穴,形成空穴选择性接触或者电子选择性接触.  相似文献   

9.
采用甚高频等离子体增强化学气相沉积技术,在前期单室沉积的微晶硅薄膜太阳电池和非晶硅/微晶硅叠层太阳电池研究的基础上,通过对微晶硅底电池本征层硅烷浓度的优化,获得了初始效率达到11.02%(电池面积1.0 cm2)的非晶硅/微晶硅叠层太阳电池.同时,100 cm2的非晶硅/微晶硅叠层太阳电池的组件效率也达到了9.04%. 关键词: 非晶硅/微晶硅叠层电池 单室 甚高频  相似文献   

10.
王利  张晓丹  杨旭  魏长春  张德坤  王广才  孙建  赵颖 《物理学报》2013,62(5):58801-058801
采用重掺杂的p型微晶硅来改善前电极掺硼氧化锌 (ZnO:B) 和窗口层p型非晶硅碳 (p-a-SiC) 之间的非欧姆接触特性. 通过优化插入层p型微晶硅的沉积参数 (氢稀释比H2/SiH4、硼掺杂比B2H6/SiH4) 获得了较薄厚度下 (20 nm) 暗电导率高达4.2 S/cm的p型微晶硅材料. 在本征层厚度约为150 nm, 仅采用Al背反射电极的情况下,获得了效率6.37%的非晶硅顶电池(Voc=911 mV, FF=71.7%, Jsc=9.73 mA/cm2), 开路电压Voc和填充因子FF均较无插入层的电池有大幅提升. 关键词: 氧化锌 p型微晶硅 非晶硅顶电池 非欧姆接触  相似文献   

11.
采用原位的氢等离子体处理技术和微晶覆盖技术来降低单室沉积p-i-n型微晶硅薄膜太阳电池中的硼污染问题.通过对不同处理技术所制备电池的电流密度-电压和量子效率测试结果的比较发现,一定的氢处理时间和合适的覆盖层技术都可以在一定程度上提高电池的性能,但每种方法的影响程度各异、文中对此异同进行了分析.通过对电池陷光结构和氢等离子体处理时间的优化,在单室中获得了效率为6.39%的单结微晶硅太阳电池.  相似文献   

12.
肖友鹏  王涛  魏秀琴  周浪 《物理学报》2017,66(10):108801-108801
硅异质结太阳电池是一种由非晶硅薄膜层沉积于晶硅吸收层构成的高效低成本的光伏器件,是一种具有大面积规模化生产潜力的光伏产品.异质结界面钝化品质、发射极的掺杂浓度和厚度以及透明导电层的功函数是影响硅异质结太阳电池性能的主要因素.针对这些影响因素已经有大量的研究工作在全世界范围内展开,并且有诸多研究小组提出了器件效率限制因素背后的物理机制.洞悉物理机制可为今后优化设计高性能的器件提供准则.因此及时总结硅异质结太阳电池的物理机制和优化设计非常必要.本文主要讨论了晶硅表面钝化、发射极掺杂层和透明导电层之间的功函数失配以及由此形成的肖特基势垒;讨论了屏蔽由功函数失配引起的能带弯曲所需的特征长度,即屏蔽长度;介绍了硅异质结太阳电池优化设计的数值模拟和实践;总结了硅异质结太阳电池的研究现状和发展前景.  相似文献   

13.
A new tunnel recombination junction is fabricated for n–i–p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p + recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n–i–p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 ·cm 2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage V oc = 1.4 V, which is nearly the sum of the V oc s of the two corresponding single cells, indicating no V oc losses at the tunnel recombination junction.  相似文献   

14.
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current-voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.  相似文献   

15.
张磊  沈鸿烈  岳之浩  江丰  吴天如  潘园园 《中国物理 B》2013,22(1):16803-016803
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot-wire chemical vapour deposition. The effect of the doping concentration of emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.  相似文献   

16.
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact(IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters(doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.  相似文献   

17.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号