首页 | 本学科首页   官方微博 | 高级检索  
     检索      

载流子选择性接触:高效硅太阳电池的选择
引用本文:肖友鹏,高超,王涛,周浪.载流子选择性接触:高效硅太阳电池的选择[J].物理学报,2017,66(15):158801-158801.
作者姓名:肖友鹏  高超  王涛  周浪
作者单位:南昌大学光伏研究院, 南昌 330031
基金项目:国家自然科学基金(批准号:51361022,61574072)和江西省博士后研究人员科研项目(批准号:2015KY12)资助的课题.
摘    要:太阳电池可看成由光子吸收层和接触层两个基本单元组成,接触层是高复合活性金属界面和光子吸收层之间的区域.为了进一步提高硅太阳电池的转换效率,关键是降低光子吸收层和接触之间的复合损失.近年来,载流子选择性接触引起了光伏界的研究兴趣,其被认为是接近硅太阳电池效率理论极限的最后的障碍之一.本文分析了三种类型的载流子选择性接触:在光子吸收层与金属界面之间引入薄的重掺杂层,即所谓的发射极或背面场;利用两种材料之间的导带或价带对齐;利用高功函数的金属氧化物与晶硅接触从而在晶硅中感应能带弯曲.基于一维太阳电池模拟软件wx AMPS,模拟了扩散同质结硅太阳电池结构为(p~+)c-Si/(n)c-Si/(n~+)c-Si]、非晶硅薄膜硅异质结太阳电池结构为(p~+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n~+)a-Si]和氧化物薄膜硅异质结太阳电池结构为(n)MoO_x/(n)c-Si/(n)TiO_x]暗态下的能带结构和载流子浓度的空间分布,其中c-Si为晶硅;a-Si为非晶硅;(i),(n)和(p)分别表示本征、n型掺杂和p型掺杂.模拟结果表明:载流子选择性接触的核心是在接触处晶硅表面附近形成载流子浓度空间分布的不对称进而使得电导率的不对称,形成了对电子的高阻和空穴的低阻或者对空穴的高阻和电子的低阻,从而让空穴轻松通过同时阻挡电子,或者让电子轻松通过同时阻挡空穴,形成空穴选择性接触或者电子选择性接触.

关 键 词:硅太阳电池  载流子选择性接触  电导率不对称
收稿时间:2017-04-06

Carrier selective contacts:a selection of high efficiency silicon solar cells
Xiao You-Peng,Gao Chao,Wang Tao,Zhou Lang.Carrier selective contacts:a selection of high efficiency silicon solar cells[J].Acta Physica Sinica,2017,66(15):158801-158801.
Authors:Xiao You-Peng  Gao Chao  Wang Tao  Zhou Lang
Institution:Institute of Photovoltaic, Nanchang University, Nanchang 330031, China
Abstract:Solar cell has two basic units:the photon absorption layer and the contact layer. The contact layer is a region between the highly recombination-active metal interface and the photon absorption layer. It is vital to reduce the recombination loss between the photon absorption layer and the contact layer in pursuit of the higher conversion efficiency of silicon solar cell. In recent years, carrier selective contact is arousing research interest in photovoltaic industry because it is deemed as one of the last remaining obstacles in approaching to the theoretical efficiency limit of silicon solar cell. In this paper, three different types of carrier selective contacts are analyzed, which includes:1) sandwiching a heavily doped thin layer between the photon absorption layer and the metal interface, which is the so-called emitter or back surface field; 2) aligning the conduction bands or the valence bands of two materials; 3) inducing the band bending through a high work function metal oxide contacting crystalline silicon. Based on one-dimensional solar cell simulation software wxAMPS, three different silicon solar cell structures are numerically simulated, which includes:1) diffused homojunction silicon solar cell(p+)c-Si/(n)c-Si/(n+)c-Si]; 2) silicon heterojunction solar cell with amorphous silicon thin films(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]; 3) silicon heterojunction solar cell with metal oxide thin films(n)MoOx/(n)c-Si/(n)TiOx], then the energy band structures and the spatial distributions of carrier concentrations of solar cells in the dark are discussed. The simulation results show that the key factor of carrier selective contacts is the asymmetric spatial distribution of the carrier concentrations, i.e. the asymmetric conductivities of electrons and holes. This leads to the formation of high resistance to electrons and low resistance to holes, or high resistance to holes and low resistance to electrons, so the holes will go through the contact easily and the electrons will be blocked simultaneously, or the electrons will go through the contact easily and the holes will be blocked simultaneously. Therefore a hole selective contact or a electron selective contact is formed, respectively.
Keywords:silicon solar cell  carrier selective contact  asymmetric conductivity
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号