首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   1154篇
  国内免费   1075篇
化学   1536篇
晶体学   444篇
力学   131篇
综合类   65篇
数学   12篇
物理学   1832篇
  2024年   14篇
  2023年   66篇
  2022年   67篇
  2021年   78篇
  2020年   69篇
  2019年   72篇
  2018年   70篇
  2017年   98篇
  2016年   95篇
  2015年   115篇
  2014年   228篇
  2013年   238篇
  2012年   168篇
  2011年   207篇
  2010年   207篇
  2009年   204篇
  2008年   206篇
  2007年   179篇
  2006年   182篇
  2005年   207篇
  2004年   205篇
  2003年   186篇
  2002年   132篇
  2001年   86篇
  2000年   99篇
  1999年   78篇
  1998年   61篇
  1997年   93篇
  1996年   73篇
  1995年   53篇
  1994年   49篇
  1993年   33篇
  1992年   27篇
  1991年   27篇
  1990年   15篇
  1989年   14篇
  1988年   9篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1979年   1篇
排序方式: 共有4020条查询结果,搜索用时 109 毫秒
991.
用化学镀法制备 Pd/Ag 膜时膜厚和组成的控制   总被引:1,自引:0,他引:1  
曾高峰  史蕾  徐恒泳 《催化学报》2009,30(12):1227-1232
 研究了不同 Pd2+含量的镀液在多孔陶瓷载体上的化学沉积规律, 发现当 Pd 沉积层厚度达到约 5 μm 后, 即使镀液中反应物的消耗比例很小, 膜厚增长也明显变缓, 沉积反应主要受膜层表面的催化活性位控制; 当镀液中 Pd2+含量只能沉积形成小于 4 μm 的 Pd 膜时, 在 323 K 化学镀 180 min 后, 镀液中 Pd2+的转化率高于 90%. 与之相似, 当 Ag 镀液中的 Ag+含量等于 0.5~2 μm 的 Ag 膜层所需量时, 在 333 K 化学镀 120 min 后, Ag+的转化率可达 95%. Ag+的高转化率与 Ag 颗粒的择向生长特性有关. 根据 Pd 和 Ag 的化学镀沉积规律, 通过调节镀液中金属离子的含量能够预先设计和精确控制超薄 Pd/Ag 膜的膜厚和组成.  相似文献   
992.
沉淀方法对Ru/CeO_2氨合成催化剂催化性能的影响   总被引:1,自引:0,他引:1  
采用沉淀法制备了Ru/CeO_2氨合成催化剂,并运用N_2物理吸附、X射线衍射、X射线荧光光谱、CO吸附和H2程序升温还原等技术对其进行了表征,考察了沉淀时反应液的并流、反加、正加以及沉积一沉淀对所制备的Ru/CeO_2催化剂氨合成性能的影响.结果表明,不同制备方法所得到的催化剂,其氯残留量和载体的还原性能都存在明显的差别,最终影响了催化剂的氨合成活性,其中采用正加法制备的催化剂上氯残留量少,载体易还原,因而催化活性最高,在10MPa,10 000h~(-1),450℃反应时,NH_3浓度达到11.9%.  相似文献   
993.
采用液相沉积法(LPD),在不同的阳极氧化铝(AAO)模板上原位合成高度有序的TiO2纳米阵列.实验结果表明,经过400℃热处理后,制备出的薄膜是锐钛矿相的TiO2纳米阵列,草酸AAO模板中Al2O3的体积分数大于0.71,薄膜由TiO2纳米棒组成,外径约为100 nm左右;而磷酸AAO模板中Al2O3的体积分数小于0.71,液相沉积后获得TiO2纳米管,管外径达200 nm左右,内径约为100 nm左右.  相似文献   
994.
为了克服脱嵌锂过程中体积变化引起的机械疲劳导致使用纯锡作为锂离子电池负极时锡的循环性能很差这一问题, 通过氧化铝(AAO)模板辅助生长方法制备了锡纳米棒电极. 用扫描电子显微镜, X射线衍射分析, 循环伏安和恒流充放电测试对锡纳米棒电极的结构和电化学性能进行了初步表征. 扫描电子显微镜观察显示, 铜集流体表面均匀分布着锡纳米棒, 锡纳米棒的平均直径约250 nm. 电化学测试结果表明, 锡纳米棒电极比平面薄膜电极具有更好的容量保持率和倍率性能. 在C/10充放电倍率条件下, 第10次循环的容量仍达到第一次循环的80%, 即使在1C倍率下, 容量仍高于540 mAh·g-1.  相似文献   
995.
谢自力  李弋  刘斌  张荣  修向前  陈鹏  郑有炓 《中国物理 B》2011,20(10):106801-106801
The non-polar a-plane GaN is grown on an r-plane sapphire substrate directly without a buffer layer by metal-organic chemical vapour deposition and the effects of V/III ratio growth conditions are investigated. Atomic force microscopy results show that triangular pits are formed at a relatively high V/III ratio, while a relatively low V/III ratio can enhance the lateral growth rate along the c-axis direction. The higher V/III ratio leads to a high density of pits in comparison with the lower V/III ratio. The surface morphology is improved greatly by using a low V/III ratio of 500 and the roughness mean square of the surface is only 3.9 nm. The high resolution X-ray diffraction characterized crystal structural results show that the rocking curve full width at half maximum along the m axis decreases from 0.757° to 0.720°, while along the c axis increases from 0.220° to 0.251° with the V/III increasing from 500 μmol/min to 2000 μmol/min, which indicates that a relatively low V/III ratio is conducible to the c-axis growth of a-plane GaN.  相似文献   
996.
HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.  相似文献   
997.
Samples with nodular defects grown from gold nanoparticles are prepared,and laser-induced damage tests are conducted on them.Nodular defects,which are in critical state of damage,are cross-sectioned by focusing on the ion beam and by imaging using a field emission scanning electron microscope.The crosssectional profile shows that cracks are generated and propagated along the nodular boundaries and the HfO2/SiO2 interface,or are even melted.The thermomechanical process induced by the heated seed region is analyzed based on the calculations of temperature increase and thermal stress.The numerical results give the critical temperature of the seed region and the thermal stress for crack generation,irradiated with threshold fluence.The numerical results are in good agreement with the experimental ones.  相似文献   
998.
Bi-doped SiO 2 –Al 2 O 3 –GeO 2 fiber preforms are prepared by modified chemical vapor deposition (MCVD) and solution doping process. The characteristic spectra of the preforms and fibers are experimentally investigated, and a distinct difference in emission between the two is observed. Under 808-nm excitation, an ultra-broad near-infrared (NIR) emission with full-width at half-maximum (FWHM) of 495 nm is observed in the Bi-doped fiber. This observation, to our knowledge, is the first in this field. The NIR emission consists of two bands, which may be ascribed to the Bi 0 and Bi + species, respectively. This Bi-doped fiber is promising for broadband optical amplification and widely tunable laser.  相似文献   
999.
1000.
采用原子层沉积技术在熔石英和BK7玻璃基片上镀制了TiO2/Al2O3薄膜,沉积温度分别为110℃和280℃。利用X射线粉末衍射仪对膜层微观结构进行了分析研究,并在激光损伤平台上进行了抗激光损伤阈值测量。采用Nomarski微分干涉差显微镜和原子力显微镜对激光损伤后的形貌进行了观察分析。结果表明,采用原子层沉积技术镀制的TiO2/Al2O3增透膜的厚度均匀性较好,Φ50 mm样品的膜层厚度均匀性优于99%;光谱增透效果显著,在1 064 nm处的透过率〉99.8%;在熔石英和BK7基片上,TiO2/Al2O3薄膜在110℃时的激光损伤阈值分别为(6.73±0.47)J/cm2和(6.5±0.46)J/cm2,明显高于在280℃时的损伤阈值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号