首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   26篇
  国内免费   13篇
化学   873篇
综合类   6篇
数学   2篇
物理学   34篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   33篇
  2019年   31篇
  2018年   37篇
  2017年   44篇
  2016年   34篇
  2015年   40篇
  2014年   26篇
  2013年   115篇
  2012年   61篇
  2011年   56篇
  2010年   51篇
  2009年   44篇
  2008年   36篇
  2007年   43篇
  2006年   45篇
  2005年   27篇
  2004年   25篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   15篇
  1994年   11篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
11.
12.
We report the synthesis, characterization, and application of [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47–67, 51–70, 58–72, and 64–76% for [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenelate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01–0.05 and 0.05–0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01–10.0 μg/g) with r 2 > 0.9991. A direct comparison of [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n with the commercially available neutral alumina showed that [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n was a similar extracting phase for the pesticides investigated.  相似文献   
13.
建立了一种非衍生化高效液相色谱-串联质谱快速检测生物体液中草甘膦、草铵膦及其代谢物等8种极性农药的方法。8种极性农药经Metrosep A Supp 5阴离子色谱柱(150 mm×4.0 mm,5μm)分离,以纯水-200 mmol/L碳酸氢铵溶液(含0.1%氨水)为流动相进行梯度洗脱,负离子多反应监测(MRM)模式进行检测。实验结果表明,8种极性农药在0.5~50 ng/mL范围内线性关系良好(r2>0.99),检出限(S/N≥3)为0.08~0.3 ng/mL,定量下限(S/N≥10)为0.3~1 ng/mL。方法的基质效应为86.5%~106%,目标化合物的回收率为81.5%~114%,日内相对标准偏差(RSD)为0.30%~2.8%,日间RSD为0.50%~5.3%。该方法无需复杂的衍生化过程,简便快速、灵敏度高、稳定性好,适用于生物体液中8种极性农药的检测。  相似文献   
14.
张静星  郑晓燕  谭丽  刘进斌  于海斌 《色谱》2021,39(5):541-551
建立了测定大气中25种有机氯农药(OCPs)的同位素稀释-高分辨气相色谱/高分辨质谱法(ID-HRGC/HRMS)。样品用正己烷/二氯甲烷(1∶1, v/v)进行加速溶剂萃取(ASE)。通过柱洗脱实验、单柱和组合柱净化实验,最终确定样品的净化方案为弗罗里硅土固相萃取柱和石墨化炭黑固相萃取柱组合净化。样品萃取液净化后进行HRGC/HRMS分析。采用平均相对响应因子(RRF)法对样品中目标物进行定量,6点校准溶液RRF的相对标准偏差(RSD)均≤20%。线性范围为0.4~800 μg/L,相关系数R2均>0.992。对空白样品依次进行100 pg、400 pg和15 ng水平下的加标试验,各添加水平下OCPs测定值的RSD为0.64%~16%,加标回收率为67.2%~135%。穿透试验表明,滤膜+聚氨酯泡沫/聚氨酯泡沫作为吸附介质的大体积主动大气采样器(AAS)在采集环境空气时,五氯苯极易发生穿透,有效采样模式待进一步研究。在上述采样模式下,六氯苯的有效采样体积较小,标准状态(101.325 kPa, 273 K)采样体积应≤30 m3,其他OCPs应≤1200 m3。以上述体积计算,25种目标化合物的检出限为0.002~0.7 pg/m3。对北京环境空气样品分析测定,结果显示除反式-环氧七氯、异狄氏剂、顺式-九氯和4,4'-滴滴滴在部分样品中未检出外,其他OCPs均为100%检出;六氯苯浓度在514~563 pg/m3之间,其他OCPs的浓度在0.01~18.9 pg/m3之间;替代标回收率为33.9%~155%。由于现有相关监测标准的仪器灵敏度较低、方法检出限较高,已无法满足目前空气中痕量OCPs的测定需求,因此亟待修订新的高灵敏度监测方法标准。该方法适用于目前大气中OCPs的超痕量水平分析,为新标准的制订奠定基础,也为国家履行相关国际公约提供有力技术指导。  相似文献   
15.
This paper presents a cost-effective and validated multi residue confirmatory method for the determination of 167 chemically different pesticides and a survey study on Cyprus honey samples. This method uses ethyl acetate for the extraction of pesticides from honey and the determination is performed with liquid chromatography (LC) coupled to mass spectrometry (MS) operating in tandem mode (MS/MS) and with GC–ECD (gas chromatography with electron capture detector) analysis. The LC-MS/MS analytical system is especially important in the analysis of polar and non-volatile pesticides. For the validation of the method, blank honey samples were spiked with 146 pesticides (organophosphorous, carbamates, triazoles, amides, neonicodinoids, strobilurines, phenylureas, bendimidazoles and others) for the LC-MS/MS analysis at three levels: 0.01, 0.05 and 0.1 mg kg?1 and with 21 pesticides for the GC-ECD analysis at two levels: 0.01 and 0.05 mg kg?1for organochlorines and 0.05 and 0.2 mg kg?1for the pyrethroids. As blank sample, a sample of honey which did not contain detectable levels of the analytes sought was used. The validation study was in accordance to the DG SANCO guidelines. The scope of validation included recovery, linearity, limits of quantification and precision. Linearity is demonstrated all along the range of concentration that was investigated with correlation coefficients ≥0.98. Recoveries of the majority of compounds were in the 70%–120% range and were characterised by precision lower or equal to 20%. The validated method was used for a survey of 36 samples of honey produced in different areas of Cyprus and this is the first work on Cypriot honey samples investigating a broad range of pesticides. Only coumaphos was detected at concentrations higher than 0.01 mg kg?1 in the 58.6% of the honey samples analysed for Coumaphos. The results were evaluated in accordance to the provisions of the Commission Regulation (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits (MRLs) in foodstuffs of animal origin. The concentrations of coumaphos in all positive samples were at levels much lower than the MRL.  相似文献   
16.
Organophosphate pesticides (OPs) have been intensively used as insecticides in agriculture; after entering the aquatic environment, they may affect a wide range of organisms. A conductometric enzymatic biosensor based on lipase extracted from Candida rugosa (CRL) has therefore been developed for the direct and rapid quantitative detection of organophosphate pesticides: diazinon, methyl parathion and methyl paraoxon in water. The biosensor signal and response time were obtained under optimum conditions, the enzyme being immobilised in the presence of gold nanoparticles. Under these conditions, the enzymatic biosensor was able to measure concentrations as low as 60 µg/L of diazinon, 26 µg/L of methyl parathion and 25 µg/L of methyl paraoxon very rapidly (response time: 3 min). Moreover, this CRL biosensor was not sensitive to interferences such as carbamates. It presented good storage stability for 21 days when kept at 4°C and it was successfully applied to real samples.  相似文献   
17.
采用固相膜萃取-气相色谱法测定养殖用水中乐果、甲基对硫磷和马拉硫磷等3种有机磷农药的含量。水样经C18固相萃取膜萃取后,用丙酮和二氯甲烷洗脱。用SPB-608毛细管色谱柱分离,氮磷检测器检测。3种有机磷农药的质量浓度均在0.02~1.0μg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.0025~0.004μg·L-1之间。以空白样品为基体进行加标回收试验,回收率在93.0%~111%之间,测定值的相对标准偏差(n=5)在0.13%~5.2%之间。  相似文献   
18.
提出了超声提取-气相色谱法测定鱼腥草中有机氯农药残留方法。采用丙酮-石油醚(1+1)混合溶剂超声提取30 min,然后浓硫酸净化、旋转蒸发浓缩,最后用气相色谱-电子捕获检测器(ECD)进行检测。有机氯农药的线性范围在0.001~0.20 mg·L-1之间,方法的检出限(3S/N)为0.023~0.29μg·kg-1,加标回收率在73.0%~115%之间,相对标准偏差(n=5)在1.4%~14%之间。本法与药典法对比,其回收率较高,适用于鱼腥草中有机氯农药的检测。  相似文献   
19.
建立了石墨烯/聚二甲基硅氧烷涂层顶空固相微萃取与气相色谱在线联用测定环境水和果汁样品中6种菊酯类农药的检测方法。该涂层的萃取性能优于商用聚二甲基硅氧烷(PDMS,Polydimethylsilane)及聚丙烯(PA,Polypropylene)涂层。对影响萃取性能的因素(如萃取温度、离子强度、萃取时间及解吸时间)依次进行了优化。在最优条件下,丙烯菊酯与联苯菊酯的线性范围为0.02~5μg/L,甲氰菊酯、氯氰菊酯、氰戊菊酯的线性范围为0.1~20μg/L,溴氰菊酯的线性范围为0.2~20μg/L,其相关系数均高于0.99,检出限为6.8~58.2 ng/L,定量下限为18.2~154.9 ng/L。同一涂层的相对标准偏差(RSD,n=5)不高于9.2%,3根涂层之间的RSD为6.7%~10.8%。将该方法用于河水、鱼塘水、苹果汁和橙汁中6种菊酯残留的分析,加标回收率分别为81.6%~92.9%,82.3%~96.1%,78.2%~92.8%和79.9%~91.7%。方法简便、灵敏,能够满足环境水样及浓缩果汁样品中痕量农药残留的分析要求。  相似文献   
20.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)法,结合溶剂提取和固相富集技术同时测定茶汤中氟啶脲、除虫脲、啶蜱脲、氟虫脲、氟铃脲、伏虫隆和杀铃脲7种苯甲酰农药残留的方法。研究了提取溶剂的种类、用量和提取时间,以及固相富集小柱的固定相和流动相对7种苯甲酰脲类农药的提取率、分离度、灵敏度和重现性等的影响。结果表明,在最佳条件下,7种苯甲酰脲类农药在6.5min内被完全分离。7种苯甲酰脲类农药残留的检测限(DL)和定量限(QL)分别为0.08~1.00ng/mL和0.09~3.02ng/mL,加标回收率为90%~105%,相对标准偏差(RSD)小于7%(n=6)。利用所建立的方法成功测定了不同茶汤中上述7种苯甲酰脲类农药残留。该方法具有耗时短、灵敏度高、稳定性好等优点,有助于茶叶安全饮用的准确评价。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号