首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   26篇
  国内免费   13篇
化学   873篇
综合类   6篇
数学   2篇
物理学   34篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   33篇
  2019年   31篇
  2018年   37篇
  2017年   44篇
  2016年   34篇
  2015年   40篇
  2014年   26篇
  2013年   115篇
  2012年   61篇
  2011年   56篇
  2010年   51篇
  2009年   44篇
  2008年   36篇
  2007年   43篇
  2006年   45篇
  2005年   27篇
  2004年   25篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   15篇
  1994年   11篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
41.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   
42.
A sample pretreatment method based on the combination of a three‐phase solvent extraction system and deep eutectic solvent‐based dispersive liquid–liquid microextraction has been introduced for the extraction of four organochlorine pesticides in cocoa samples before their determination by gas chromatography‐electron capture detection. A mixture of sodium chloride, acetonitrile, and potassium hydroxide solution is added to cocoa bean or powder. After vortexing and centrifugation of the mixture, the collected upper phase (acetonitrile) is removed and mixed with a few microliters of N,N‐diethanol ammonium chloride: pivalic acid deep eutectic solvent. Then it is rapidly injected into deionized water and a cloudy solution is obtained. Under optimum conditions, the limits of detection and quantification were found to be 0.011‐0.031 and 0.036‐0.104 ng/g, respectively. The obtained extraction recoveries varied between 74 and 92%. Also, intra‐ (n = 6) and interday (n = 4) precisions were less than or equal to 7.1% for the studied pesticides at a concentration of 0.3 ng/g of each analyte. The suggested method was applied to determine the studied organochlorine pesticide residues in various cocoa powders and beans gathered from groceries in Tabriz city (Iran) and aldrin and dichlobenil were found in some of them.  相似文献   
43.
The presence of polar pesticides in environmental waters is a growing problem. After application their migration into the aqueous phase is promoted by their high water solubility. Transport processes are usually complex and inputs are generally stochastic; this makes monitoring of this class of pesticides challenging using low volume spot samples of water. Recently there has been a trend to use passive samplers to monitor pesticides in river catchments as it is an in-situ time integrative sampling technique. The three main types of device used for this purpose are, Chemcatcher®, POCIS and o-DGT. This article reviews the fate and current state-of-the-art for monitoring polar pesticides in aqueous matrices. Principles and the theory of passive sampling and strategies for passive sampler design and operation are presented. Advances in the application of passive sampling devices for measuring polar pesticides are extensively critiqued; future trends in their use are also discussed.  相似文献   
44.
建立了同时测定地下水中多环芳烃(PAHs)、多氯联苯(PCBs)、有机氯农药(OCPs)和有机磷农药(OPPs)等42种半挥发性有机污染物的分析方法,对固相萃取、液-液萃取、萃取溶剂和色谱柱等分析条件进行优化。最终采用乙酸乙酯-正己烷(1∶4)液液萃取,DB-5MS色谱柱分离,GC-MS/SIM测定,内标法定量。结果表明,42种目标物在0.5~1 000μg/L范围内线性关系良好(r20.995);方法检出限为0.05~3.08 ng/L。在10、40、400 ng/L加标水平下,42种目标物的基体加标平均回收率为73.0%~107%,相对标准偏差(RSD,n=5)为1.4%~11.3%。将方法应用于石家庄周边地区水样检测,结果可靠。该方法灵敏、准确、简单易行,可显著提高地下水中主要有机污染物的分析效率。  相似文献   
45.
表面增强拉曼光谱在食品安全分析中的应用   总被引:1,自引:0,他引:1  
拉曼光谱技术具有样品用量少、快速高效、无损分析等特点,表面增强拉曼光谱克服了常规拉曼光谱灵敏度低的缺点,可以获得更多物质结构信息,在现场快速筛查、检测和鉴别农兽残、限用或禁用添加剂分析检测中具有广阔的应用前景。本文综述了表面增强拉曼光谱在食品中农药残留、兽药残留和限/禁用添加剂检测中的研究进展,并展望了其发展前景。  相似文献   
46.
A solid-phase microextraction technique using steel fiber coated with 20 μm polypyrrole (Ppy) doped with polyphosphate was developed for the GC determination of a group of organochlorine pesticides (OCPs) in water. The coating was prepared using a three-electrode electrochemical system from a 10% aqueous sodium polyphosphate solution containing 0.05 M pyrrole by applying a constant potential of 1.2 V for 30 min. In order to obtain an adherent, smooth and stable film of polypyrrole, experimental parameters related to the coating process consisting of the type of dopant or counter-ion, deposition potential, concentration of the monomer, concentration of the counter-ion, and deposition time were optimized. The effects of various parameters on the efficiency of SPME process such as extraction time, extraction temperature, ionic strength, desorption time, and desorption temperature were also studied. The coating was highly stable and extremely adherent to the surface of the steel fiber. The method was linear for at least three orders of magnitude with correlation coefficients varying from 0.9818 to 0.9977. The accuracies found through spiking blank samples showed high recoveries between 82 and 110%. Intra- and inter-day precisions of the method were determined from mixed aqueous solutions containing 1.0 ng ml−1 of each OCP. The intra-day precisions varied from 4.7% for heptachlor to 11.4% for methoxychlor, while the inter-day precisions varied from 6.8% for endosulfan I to 13.0% for p,p′-DDD and o,p-DDD. Limits of detection based on S/N = 3 were in the range 0.015-0.66 pg ml−1. The proposed method was applied to monitor organochlorine pesticides in some well water samples.  相似文献   
47.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   
48.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   
49.
Determination of an individual's aggregate dietary ingestion of pesticides entails analysis of a difficult sample matrix. Permethrin-specific molecularly imprinted polymer (MIP) solid-phase extraction cartridges were developed for use as a sample preparation technique for a composite food matrix. Vortexing with acetonitrile and centrifugation were found to provide optimal extraction of the permethrin isomers from the composite foods. The acetonitrile (with 1% acetic acid) was mostly evaporated and the analytes reconstituted in 90:10 water/acetonitrile in preparation for molecularly imprinted solid-phase extraction. Permethrin elution was accomplished with acetonitrile and sample extracts were analyzed by isotope dilution gas chromatography–ion trap mass spectrometry. Quantitation of product ions provided definitive identification of the pesticide isomers. The final method parameters were tested with fortified composite food samples of varying fat content (1%, 5%, and 10%) and recoveries ranged from 99.3% to 126%. Vegetable samples with incurred pesticide levels were also analyzed with the given method and recoveries were acceptable (81.0–95.7%). Method detection limits were demonstrated in the low ppb range. Finally, the applicability of the MIP stationary phase to extract other pyrethroids, specifically cyfluthrin and cypermethrin, was also investigated.  相似文献   
50.
A liquid‐phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 μL) of isooctane as the acceptor phase was introduced continually to fill‐up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 μL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 μL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 μg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号