首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
建立了大体积采样结合高分辨气相色谱-电子捕获负化学源-低分辨质谱(HRGC-ECNI-LRMS)测定空气中短链氯化石蜡(SCCPs)的定量分析方法。联合使用酸化硅胶复合层析柱和碱性氧化铝层析柱净化处理空气样品中的SCCPs,并对净化条件进行优化。使用该方法计算得到氯含量为58.1%~63.3%的SCCPs系列标准储备溶液的总响应因子与氯含量线性相关,相关系数(R2)大于0.99。该方法的仪器检出限(S/N≥3)为4.2 pg,定量限(S/N≥10)为12 pg。SCCPs的方法检出限(MDL)为0.34 ng/m3(n=7),实际样品加标回收率均达80%以上。该方法灵敏度高、选择性好,能满足空气样品中SCCPs的监测和分析需求。  相似文献   

2.
样品采取索氏抽提,抽提液依次经多段混合硅胶柱、氧化铝柱和硅胶柱净化后,采用同位素稀释法和高分辨气相色谱/高分辨质谱联用仪(HRGC/HRMS)对其中的17个2,3,7,8-氯取代二噁英(PCDD/Fs)同系物进行了测定。研究结果表明,用本法4次分析二噁英标准溶液,其结果的RSD<7.1%;回收率可达62%~103%;标准参考样品的分析结果与标准值基本吻合,3次实验结果的RSD≤15%;仪器检出限为2,3,7,8-TCDF 0.1 pg,2,3,7,8-TCDD 0.2 pg,OCDD 0.8 pg;测定某降尘样品中二噁英,计算得降尘通量为14.02 pgTEQ m-2day-1。  相似文献   

3.
建立了大流量空气采样高分辨气相色谱/高分辨质谱(HRGC/HRMS)同时分析测定大气样品中多氯联苯(PCBs)和多溴联苯醚(PBDEs)的分析方法。结果表明在采样过程中污染物没有发生穿透。通过添加 13C同位素标准物质进行评价,PCBs和PBDEs的加标回收率分别为60.7%~121.4%和69.9%~140.4%,均符合美国环保署相关方法的要求。PCBs和PBDEs的方法检出限分别低于0.019 pg/m3和0.189 pg/m3;色谱分离效果良好,可以满足大气样品中PCBs和PBDEs的监测需要。  相似文献   

4.
郑晓燕  于建钊  许秀艳  于海斌  陈烨  谭丽  吕怡兵 《色谱》2015,33(10):1071-1079
针对环境监测的特点和要求,建立了同位素稀释-高分辨气相色谱/高分辨质谱测定大气中多溴联苯醚(PBDEs)和多溴联苯153(BB153)的方法。采用正己烷/二氯甲烷(1:1, v/v)及正己烷分别对PBDEs和BB153进行快速溶剂萃取,并通过复合硅胶柱净化。在校准曲线最高浓度的10%和90%加标水平下得到的天然内标的平均回收率分别为100%和104%,平均相对标准偏差(n=7)分别为5%和6%;二至十溴代联苯醚和BB153相应的13C同位素标准物质回收率在36.5%~133%之间;而一溴代联苯醚13C同位素标准物质回收率较差,可能是由于物化性质与其他化合物不同。在实际采样体积为300 m3的情况下,未发生污染物穿透现象;分析物检出限低于2×10-4 ng/Nm3,提取内标回收率在56%~126%之间(一溴代联苯醚除外)。实验结果表明该方法能对化合物准确定量,适用于大气中二至十溴代联苯醚和BB153的分析。  相似文献   

5.
刘洪媛  金静  郭崔崔  陈吉平  胡春 《色谱》2022,40(7):644-652
环境空气中的多氯萘(PCNs)一般为痕量水平(pg/m^(3)),要实现其准确定量必然对分析方法的提取、净化和仪器分析提出较高要求。研究通过考察提取溶剂种类、净化流程和色谱-质谱参数,建立了加速溶剂萃取(ASE)-多层硅胶复合中性氧化铝柱的净化方法,并利用同位素稀释气相色谱-三重四极杆质谱(GC-MS/MS)对环境空气中的多氯萘进行测定。同时,通过在采样、提取和进样分析前分别添加同位素内标,开展质量控制和保证。结果表明,在2~100 ng/mL范围内3~8氯萘的平均相对响应因子(RRF)的相对标准偏差(RSD)均小于16%。PCNs同类物的方法检出限为1~3 pg/m^(3)(以样品体积为288 m^(3)计算)。采用基质加标法评价了方法对环境空气样品中PCNs测定的精密度和准确度,低、中、高加标水平下3~8氯萘的平均加标回收率分别为89.0%~119.4%、98.6%~122.5%和93.7%~124.5%,测定结果的平均相对标准偏差分别为1.9%~7.0%、1.6%~6.6%和1.0%~4.8%。整个分析过程中,采样内标和提取内标的平均回收率分别为136.2%~146.0%和42.4%~78.1%,RSD分别为5.6%~7.5%和2.7%~17.5%,满足痕量分析的要求且平行性较好。方法的灵敏度和准确度高,精密度良好,适用于环境空气中3~8氯萘的准确定量测定,可在一定程度上缓解多氯萘监测对高分辨气相色谱-高分辨质谱的依赖,为实现多氯萘的国际履约提供方法支持。  相似文献   

6.
我国水产品中多氯联苯(PCBs)的检测方法,主要以6种指示性PCBs和12种二噁英类共平面PCBs为主,仅涵盖有限的PCBs。为更全面地获得生物体中PCBs的浓度水平,深入探讨PCBs在生物体内的代谢和富集特征,进而准确评价PCBs对人类的暴露水平及风险,以鱼和贝类作为生物样品代表,建立了加速溶剂提取-同位素稀释-高分辨气相色谱-高分辨质谱(ASE-ID-HRGC-HRMS)测定生物样品中82种PCBs的方法。比较了振荡提取和加速溶剂提取两种提取方式的回收率和重复性,最终采用正己烷-二氯甲烷(1∶1, v/v)对PCBs进行加速溶剂提取。考察了各流分淋洗液对PCBs的回收率,确定了样品提取液经8 g 44%酸性硅胶层析柱(内径15 mm), 90 mL正己烷洗脱的净化方式。样品提取液净化浓缩后进行HRGC-HRMS分析,色谱柱采用DB-5MS超低流失石英毛细管柱(60 m×0.25 mm×0.25 μm)。通过优化后的升温程序对化合物进行分离,以保留时间和两个特征离子精准定性,采用同位素内标法定量。结果表明,在0.1~200 μg/L范围内,平均相对响应因子(RRF)的相对标准偏差值(RSD, n=7)均≤20%,相关系数(r2)>0.99。生物样品中PCBs的方法检出限为0.02~3 pg/g;鱼类中PCBs平均加标回收率为71.3%~141%, RSD(n=7)为2.1%~14%;贝类中PCBs平均加标回收率为76.9%~143%, RSD为1.4%~11%。该方法灵敏、准确、可靠,可以更加全面具体地分析鱼和贝类等水产品受PCBs的污染情况,为国内外开展生物监测提供有效的技术支持,从而服务于相关生态环境管理及履行《斯德哥尔摩公约》。  相似文献   

7.
刀谞  吕怡兵  滕恩江  张霖琳  王超  李丽和 《色谱》2014,32(9):936-941
建立了大气颗粒物PM2.5、PM10中六价铬(Cr(Ⅵ))的离子色谱-电感耦合等离子体质谱(IC-ICP-MS)检测方法。采用碳酸氢钠(NaHCO3)溶液超声提取大气颗粒物样品中的Cr(Ⅵ),并使用含有0.22 g/L 乙二胺四乙酸二钠盐(Na2EDTA)的75 mmol/L硝酸铵溶液(pH 7.0)淋洗液通过离子色谱柱(AG7,50 mm×4 mm)分离出样品中的Cr(Ⅵ),电感耦合等离子体质谱测定。标准溶液中Cr(Ⅵ)的质量浓度在0.05~5 μg/L范围内呈良好的线性关系,相关系数达0.9999,标准溶液测定的精密度为1.0%~4.0%,标准样品测定的相对误差为3.3%;纤维素滤膜适用于Cr(Ⅵ)的采样,将纤维素滤膜碱化后,Cr(Ⅵ)的回收率从75%增加到102%;样品在20 mmol/L碳酸氢钠溶液中超声30 min后上机测试,提取完全且回收率稳定;当采样体积为20 m3,方法的检出限为0.0004 ng/m3;采集并测定了PM2.5及PM10实际样品,样品的加标回收率为91.6%~102%,精密度为1.7%~7.6%。该方法高效、稳定、灵敏,适用于大气颗粒物中六价铬的测定。  相似文献   

8.
采用高分辨气相色谱/高分辨质谱(HRGC/HRMS)定量测定了底泥中的17种2,3,7,8位多氯代二噁英和呋喃(PCDD/Fs) ,并测定了四至八氯取代的二噁英和呋喃总量。样品经加速溶剂萃取,然后通过流体控制系统(FMS)自动过硅胶柱、氧化 铝柱和碳柱净化,最后浓缩。以HRGC/HRMS电压选择离子检测模式对样品中的PCDD/Fs进行了定性分析,采用同位素稀释 技术定量,该方法可精确定量到pg/g水平。结果表明该方法分析的17种二噁英和呋喃异构体的检出限可达0.1 pg/g。同 位素标准的回收率为49.8%~85.3%,样品中各异构体的回收率为93.2%~115.6%。该方法不但满足国际标准的要求,还大 大提高了分析速度,使分析周期从原来的2周缩短到2 d以内。  相似文献   

9.
建立了气相色谱-三重四极杆串联质谱检测环境空气中多环芳烃的方法,并利用同位素稀释法对多环芳烃进行了测定。将该方法应用于华南地区某大型石化企业周边环境空气中多环芳烃的检测,并与气相色谱-质谱方法进行了对比。结果表明,该方法的仪器检出限(0.01~0.15 μg/L)和定量限(0.03~1.5 μg/L)均优于气相色谱-质谱法(0.1~0.8 μg/L和0.3~3.5 μg/L),并有更好的灵敏度与选择性。当利用气相色谱-质谱作为检测手段时,回收率指示物氘代菲和进样内标六甲基苯均受到了杂质的严重干扰,影响了定量结果的准确性,而三重四极杆串联质谱很好地解决了这些问题。实际样品分析时,标准曲线中16种多环芳烃相对响应因子的相对标准偏差为2.60%~15.6%,氘代化合物的回收率为55.2%~82.3%,空白加标样品的回收率为98.9%~111%,平行样品的相对标准偏差为6.50%~18.4%,采样空白含量范围为未检出~44.3 pg/m3,实验室空白含量范围为未检出~36.5 pg/m3。上述研究表明,分析环境空气中的多环芳烃时,气相色谱-三重四极杆串联质谱方法值得推广。  相似文献   

10.
2014年1月在杭州市选择5个点位采集大气颗粒物PM2.5样品,采用同位素稀释高分辨气相色谱/高分辨质谱测定PM2.5中的二恶英(PCDD/Fs)和多氯联苯(PCBs),对PM2.5的污染状况以及PM2.5中PCDD/Fs和PCBs的污染水平及分布特征进行了研究。PM2.5的质量浓度范围为85~168 μg/m3,PM2.5污染较重,但与2004年同期相比明显降低。PM2.5中PCDD/Fs的毒性当量(TEQ)为0.277~0.488 pg I-TEQ/m3,明显高于2004年同期采集样品。颗粒物中PCDD/Fs以八氯代二苯并-对-二恶英(OCDD)为主,毒性当量主要贡献者为2,3,4,7,8-五氯代二苯并呋喃(2,3,4,7,8-PeCDF)。PM2.5中PCBs的质量浓度范围为2.9~8.1 pg/m3,二恶英类多氯联苯(DL-PCBs)的毒性当量范围为2.6~6.1 fg WHO-TEQ/m3,污染较低。PCBs在颗粒物中分布以PCB-28为主,但对毒性当量贡献最大的为PCB-126。PCDD/Fs和PCBs的气-固分配特征表现为PCDD/Fs主要分布于颗粒物中,而PCBs主要分布于气相中。  相似文献   

11.
李海芳  高翠华  林金明 《色谱》2017,35(1):47-53
建立石墨化碳(GCB)为吸附剂的动态采样系统,可实现液化石油气(LPG)中芳烃杂质的采样和同步萃取富集。LPG中的芳烃杂质(苯、甲苯、二甲苯、苯乙烯和萘)被快速捕集后,进行气相色谱-质谱(GC-MS)定性定量分析。与C18和苯乙烯二乙烯苯吸附剂(PS-DVB)相比,GCB填充柱对芳烃杂质的萃取效率最高。评价了基于GCB填充柱采样的吸附效率、重现性和贮存稳定性。采样和分析方法对氮气模拟气流中8种芳烃的定量分析线性范围为15~1 000μg/m~3。所开发的方法具有回收率高(92.9%~109.0%)、检出限低(1.0~6.2μg/m~3)、准确性好(相对标准偏差为0.6%~5.8%)和准确度高(标准偏差为0.8%~8.2%)等优点。  相似文献   

12.
虞佐嗣  刘于  朱岩 《色谱》2022,40(1):82-87
水溶性离子是固、液气溶胶的重要组成部分,对于气溶胶的理化性质和空气质量具有重大影响,研究水溶性离子的含量对于大气环境的污染与防治具有深远意义。该研究建立了一种滤膜冷凝收集-离子色谱技术采集固体气溶胶和液体气溶胶并测定其中的5种水溶性阴离子(Cl^(-)、F^(-)、NO^(-)_(3)、NO2^(-)、SO4^(2-))含量的方法。首先,采用固体颗粒过滤器和冷凝收集法分别收集固体气溶胶和液体气溶胶,固体气溶胶以固体颗粒物的形式被收集在固体颗粒过滤器内,液体气溶胶以冷凝液的形式在冷阱中被收集。其次,以离子色谱法对固、液体气溶胶中的水溶性阴离子含量进行检测。在以Dionex IonPac AS11-HC-4μm作为分析柱,流速为1 mL/min,柱温为30℃,淋洗液氢氧化钾(KOH)浓度在0~40 min内由1 mol/L线性增至25 mol/L,进样量100μL的条件下,各离子在40 min内有效分离,5种阴离子在0.1~10 mg/L范围内线性关系良好(相关系数为0.9992~0.9997),检出限低(0.02~0.04 mg/L)。对样品采集条件(采样时间、采样温度和采样流量)进行了优化,结果表明,在采样时间2 h、采样温度-13℃、采样流量1.0 L/min的条件下,可获得较为满意的结果。在优化的条件下分别对实际样品的两类溶胶中的5种阴离子含量进行了检测,测得实际样品的液体气溶胶中5种阴离子含量分别为5.7402μg/m^(3)(F^(-))、1.1599μg/m^(3)(Cl^(-))、3.3233μg/m^(3)(NO^(-)_(2))、2.4861μg/m^(3)(NO^(-)_(3))和0.9745μg/m^(3)(SO^(2-)_(4)),固体气溶胶中5种阴离子含量分别为14.1037μg/m^(3)(F^(-))、5.0398μg/m^(3)(Cl^(-))、9.3052μg/m^(3)(NO^(-)_(2))、8.4528μg/m^(3)(NO^(-)_(3))和5.6314μg/m^(3)(SO^(2-)_(4))。该方法可应用于实际的大气检测中,也为其他离子的采集和分析条件的摸索提供了方法。  相似文献   

13.
A rapid and reliable method was developed and applied for the simultaneous determination of 17 organochlorine pesticides (OCPs) in propolis. After extraction with hexane and acetone (1:1, v/v), four sorbents (florisil, silica, graphitized carbon, and tandem graphitized carbon plus florisil) were assayed for the clean-up step. The elution solvents hexane and ethyl acetate (1:1, v/v), hexane and dichloromethane (3:7, v/v), and ethyl acetate and hexane (2:8, v/v) were studied. The results showed that the combination of the tandem graphitized carbon and florisil cartridge with the elution solvent of 6mL of ethyl acetate and hexane (2:8, v/v), which was capable of eliminating matrix interference and providing colorless eluates, was the most efficient clean-up procedure for propolis extracts when testing for OCPs. The analytical technique employed was gas chromatography with electron capture detection (GC–ECD). The correlation coefficients from linear regression for the analyzed concentrations (5∼100 μg/kg) were >0.9961. The limits of detection (LODs) varied between 0.8 μg/kg for 4,4′-DDE and 11.4 μg/kg for endosulfan II, and the limits of quantitation (LOQs) ranged from 2.6 to 38.1 μg/kg. The average recoveries varied between 62.6 and 109.6%. Relative standard deviations (RSD%) ranged from 0.8 to 9.4%. Sample analysis indicated that 4,4′-DDE was detected more often in propolis than other pesticides, such as β-HCH, δ-HCH and heptachlor. Figure GC-ECD chromatogram of a standard solution with 0.1 mg/L of OCPs  相似文献   

14.
洪灯  谢文  侯建波  胡晓莉  史颖珠  李杰 《色谱》2019,37(11):1173-1178
建立了高效液相色谱-四极杆/静电场轨道阱高分辨质谱(HPLC-Q/Orbitrap HRMS)快速筛查保健食品中的西布曲明及其5种衍生物的方法。样品经甲醇超声提取,高速离心,Hypersil Gold色谱柱(100 mm×2.1 mm,3 μm)分离,以甲醇与0.15%(v/v)甲酸水溶液为流动相进行梯度洗脱,正离子全扫描/数据依赖二级扫描(Full MS/dd-MS2)模式下进行质谱分析,一级高分辨准分子离子峰定量。8 min内完成对样品中分析物的分离和高精度一级、二级扫描,得到准确质量数和准确碎片离子信息。实验结果表明,6种化合物的精确质量相对偏差均小于1×10-6,在0.5~20.0 μg/L范围内线性相关系数大于0.999,定量限为25 μg/kg,回收率在93.5%~103.5%,相对标准偏差在1.5%~7.7%,本方法具有前处理简单、快速、准确、高灵敏度、高选择性等特点,可用于保健食品中西布曲明及其衍生物等减肥类非法添加物的定性筛查和定量分析。  相似文献   

15.
加压溶剂萃取-气相色谱法测定荞麦中残留的有机氯农药   总被引:2,自引:1,他引:1  
廉玫  许峰  观文娜  徐媛  关亚风 《色谱》2008,26(4):484-488
用所研制的24位全自动加压溶剂萃取仪(APLE),以丙酮-正己烷(体积比为1∶1)为溶剂,在100 ℃和10 MPa条件下,对荞麦样品中残留的7种有机氯农药进行了萃取,并通过气相色谱对萃取液进行定量分析。萃取的绝对回收率为68%~126%,相对标准偏差为1.2% ~14.7%,检测下限为0.051~0.18 ng/g。与索氏提取法对比,相对提取回收率为116%~148%,表明萃取收率高于索氏提取法。  相似文献   

16.
魏丹  国明  吴慧珍  张菊 《色谱》2020,38(8):945-952
建立了加速溶剂萃取(ASE)、磁固相萃取净化(MSPE)、气相色谱-质谱(GC-MS)测定土壤中多环芳烃和有机氯残留的方法。ASE萃取溶剂为丙酮-正己烷(1:1,v/v),萃取温度为100℃,萃取压力为11.032 MPa,加热时间为5 min,静态萃取时间为5 min,循环萃取3次,冲洗体积为60%萃取池体积,氮气吹扫100 s。然后采用室温制备法自制ZIF-8/nZVI磁性材料用于净化萃取液,将净化液浓缩定容后进行GC-MS测定。多环芳烃和有机氯的线性范围为5~200 μg/kg,线性相关系数(r2)均大于0.99;目标物的检出限(LOD,S/N=3)为0.04~1.21 μg/kg。所建方法成功用于土壤样品中16种多环芳烃和23种有机氯的测定,在3个加标水平下得到的加标回收率为63.9%~112.1%,相对标准偏差(RSD)为0.4%~26.2%。研究结果表明,该方法具有灵敏度高、重现性好、回收率高等特点,适用于土壤中多环芳烃和有机氯残留的检测。  相似文献   

17.
六氯丁二烯是一种持久性有机污染物,于2015年和2017年分别被列入《斯德哥尔摩公约》附件A和附件C的受控污染物名单中。六氯丁二烯的来源、环境赋存和影响等研究对控制该新增受控持久性有机污染物污染具有重要意义,而灵敏可靠的六氯丁二烯分析方法是开展相关研究的前提和基础。近年来已有不少学者将六氯丁二烯作为分析目标物之一进行了检测或方法学研究。基于这些研究成果,该文综述了六氯丁二烯分析方法的研究进展,其中重点介绍了空气、水体、土壤、污泥、生物组织等多种介质中六氯丁二烯的样品前处理方法,并比较了各方法的优缺点,以期为该领域的进一步研究提供参考。空气中六氯丁二烯主要由泵抽气通过吸附管而采集,再经热脱附后进行仪器分析,检出限在ng/m3水平。也有研究应用聚氨酯泡沫被动采样器和吸附剂填充聚氨酯泡沫被动采样器采集大气中六氯丁二烯及其他污染物。基于吸附剂填充聚氨酯泡沫被动采样器的分析方法灵敏度较高,其对六氯丁二烯的检出限低至0.03 pg/m3。然而目前被动采样体积仅根据六氯丁二烯的log KOA系数估算,未来仍需进一步实验校正。水体样品前处理通常也较简单,通过吹扫捕集、液-液萃取或固相萃取目标物后进行仪器分析。固相萃取法能够同步实现目标物的提取、净化和浓缩,在水样中六氯丁二烯分析方面具有明显优势。固相萃取柱类型以及干燥步骤中柱中残留水分去除率均会影响六氯丁二烯的回收率。灰尘、土壤、沉积物、污泥和生物组织等固体介质样品基质最为复杂,需联合多种方法进行前处理。固体样品中六氯丁二烯提取方法包括索氏提取,加速溶剂萃取和超声萃取,其中超声萃取法应用最为广泛。固体基质净化方面主要采用层析柱色谱法,多根净化柱联用或多层复合柱能够提升净化效果。仪器分析方面,六氯丁二烯主要采用气相色谱和质谱联用检测,高性能质谱检测器如串联质谱能够大大提高六氯丁二烯的检测灵敏度,具有较大的应用潜力。  相似文献   

18.
建立了微波辅助萃取结合气相色谱-飞行时间质谱(GC-TOF MS)技术在负化学电离(NCI)源和电子轰击电离(EI)源两种模式下测定烟草中24种农药残留的分析方法。烟叶样品于100℃下用二氯甲烷-正己烷(3:1, v/v)混合溶剂微波萃取10 min,萃取液经弗罗里硅土固相萃取柱净化后进行检测分析。在NCI源和EI源质谱模式下,24种农药的线性关系均良好(r2>0.99),相对标准偏差分别小于8.6%和9.1%,定量限分别为0.3~6.9 μg/kg和10.2~44.9 μg/kg,加标回收率分别为75.2%~94.8%和75.0%~95.1%。比较两种离子源模式下的色谱图和质谱图,NCI源模式较EI源模式的选择性好、灵敏度高、基质干扰小、图谱简单易于解析,检出限低一个数量级以上,在分析低含量、复杂基质的样品时更具优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号