首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
固相萃取-加压毛细管电色谱法测定水体中8种农药残留   总被引:1,自引:0,他引:1  
采用固相萃取-反相加压毛细管电色谱-紫外检测技术,建立了水体中乐果、敌敌畏、克百威、甲萘威、莠去津、甲基对硫磷、马拉硫磷、百菌清8种农药残留的同时检测方法。在最佳条件下,8种目标农药的线性范围分别为:3.4~100μg/mL、8.1~120μg/mL、1.2~50μg/mL、0.2~50μg/mL、0.1~50μg/mL、3.7~100μg/mL、11.2~150μg/mL、2.1~100μg/mL,相关系数为0.9961~0.9997;检出限(S/N=3)在0.03~3.7μg/mL之间,加标回收率在71.0%~114.1%范围,相对标准偏差(RSD)为1.1%~9.8%。该方法简单、可靠、适用于水中多种农药残留的同时分析测定。  相似文献   

2.
建立了固相萃取-高效液相色谱-串联质谱(HPLC-MS/MS)分析方法测定水中150种农药残留。采用HLB固相萃取小柱净化和富集,待测物经Kinetex XB-C18柱(100 mm×3.0 mm, 2.6μm)分离,以0.1%甲酸水溶液-乙腈为流动相,梯度洗脱;采用电喷雾正离子源(ESI+),多重反应监测(MRM)模式监测。实验结果显示,150种农药在各自线性范围内相关系数均大于0.991;检出限(S/N≥3)为0.1~6 ng/L;定量限(S/N≥10)为0.3~20 ng/L;在20、100、200 ng/L三个浓度添加水平下,回收率在60.7%~116%之间,相对标准偏差(RSD)在4.0%~10.2%之间。该方法操作简单、灵敏、快速,适用于水体中农药残留的日常监测。  相似文献   

3.
建立了鹅组织(肌肉、肝脏、肾脏以及皮肤和脂肪)中哌嗪残留的气相色谱-串联质谱检测法。鹅组织经加速溶剂萃取(ASE350),乙腈提取,过Strata-X-C固相萃取小柱净化后的样品在乙酸酐和三乙胺条件下衍生。衍生产物经气相色谱-串联质谱仪(GC-MS/MS)检测,色谱柱为TG-5MS Amine(30 m×0.25 mm i.d.,0.25μm),载气为氦气,进样口和检测器温度均为280℃。采用EI模式,SCAN和SIM扫描定性,Auto SRM结合外标法定量。哌嗪添加量在5.1~2.5×10~3μg/kg范围内,线性关系良好,相关系数为0.9995。在定量限(LOQ:5.1,5.2,5.2,5.2)~2.0×10~3μg/kg的加标水平上,鹅组织中哌嗪的平均回收率为85.2%~95.5%,相对标准偏差(RSD)为1.6%~4.7%,日内RSD为1.2%~5.3%,日间RSD为2.0%~7.7%。检测限(LOD)和定量限(LOQ)分别在1.4~1.6μg/kg(S/N≥3)和5.1~5.2μg/kg(S/N≥10)之间。方法适用于鹅组织中哌嗪残留的检测。  相似文献   

4.
固相萃取-气相色谱法检测血清中有机氯农药残留的研究   总被引:2,自引:0,他引:2  
建立了血清中DDTs和BHCs共8种有机氯农药残留的固相萃取-气相色谱检测方法。样品经超声酸化沉淀蛋白后,采用正己烷-丙酮(9∶1)经Cleanert ODS C18N固相萃取小柱提取,Florisil固相萃取小柱净化,氮气吹干,以500μL正己烷定容,气相色谱-电子捕获检测器(GC-ECD)进行定量分析。结果表明,方法的线性范围2~200 ng/m L,相关系数(r)为0.996 4~0.999 0,检出限(LOD)为0.1~0.9 ng/m L,定量下限(LOQ)为0.4~3.0 ng/m L。8种农药的回收率为80.5%~112.7%,相对标准偏差(RSD)为2.1%~7.9%。该方法具有较高的准确度和精密度,适用于血清样品中痕量有机氯农药的检测。  相似文献   

5.
建立了磺胺药物残留的高效液相色谱-光化学在线衍生-荧光检测方法,并应用于猪肉的检测。样品经过乙腈提取,色谱柱分离后,通过在线光化学衍生后,用荧光检测器进行直接检测。优化后的色谱条件:Eclipse Plus C18柱(250 mm×4.6 mm,5.0μm),流动相为均含0.2%甲酸的乙腈、甲醇和水梯度洗脱,检测激发波长为248 nm,发射波长为350和412 nm。各种磺胺在各自浓度范围内线性相关系数R2>0.999,回收率在85.7%~101.1%之间,RSD为1.9%~6.6%(n=6),各磺胺的检出限(S/N=3)为0.2~3.0μg/kg,定量限(S/N=10)为0.5~10.0μg/kg。  相似文献   

6.
建立了一种同时检测中药材中齐墩果酸(OA)和熊果酸(UA)含量的超高效液相色谱串联质谱方法。采用超高效液相色谱-三级四极杆质谱(UPLC-TQMS)法对样品进行测定,Waters Acquity UPLC BEH C_(18)色谱柱(50 mm×2.1 mm,1.7μm)进行分离,以乙腈-5 mmol/L乙酸铵水溶液(氨水调至pH 9.24)为流动相,梯度洗脱;负离子模式下检测。结果表明,齐墩果酸和熊果酸在0.5~50.0 ng/mL浓度范围内线性关系良好,相关系数(r~2)分别为0.999 8和0.999 7;检出限(S/N=3)分别为0.006 6,0.012 8 ng/mL,定量下限(S/N=10)分别为0.002 0,0.003 8 ng/mL;对OA和UA进行加标回收实验,平均回收率分别为101.1%和100.8%,相对标准偏差(RSD,n=9)分别为1.8%和0.04%。对10种不同中药材中齐墩果酸和熊果酸含量进行检测,结果表明该方法快速简便、准确度高、重现性好,可用于含有齐墩果酸和熊果酸的中药材含量测定。  相似文献   

7.
建立了一种分析茶叶中高氯酸盐含量的固相萃取-高效液相色谱/串联质谱方法。样品采用50%甲醇溶液提取,C_(18)固相萃取柱净化,采用Phenomenex Luna Hillic色谱柱(100×2mm,3μm),流动相为5mmol/L乙酸铵水溶液(含0.2%甲酸)-甲醇,梯度洗脱,流速0.4mL/min。质谱采用多反应监测(MRM)模式检测,采用~(18)O标记高氯酸根离子作为内标进行基质校正,内标法定量。结果显示:高氯酸盐在1.0~20.0ng/mL范围内线性关系良好;对绿茶、乌龙茶、红茶3种茶叶样品的加标回收率为102.5%~105.3%,相对标准偏差(RSD)为1.2%~2.8%,定量限(S/N10)为0.02mg/kg,检出限(S/N=3)为0.006mg/kg。实际样品检测表明该方法稳定、准确、可靠,适合于茶叶中高氯酸盐的测定。  相似文献   

8.
液相色谱-荧光检测法(LC-FLD)测定贝类样品中石房蛤毒素(STX)和decarbamoylsaxitoxin(dcSTX)。样品经30 mmol/L HAc超声提取,C18固相萃取柱净化,2%碱性H2O2荧光衍生,C18色谱柱(4.6 mm×250 mm,5μm)分离,以乙腈-0.1 mol/L甲酸铵溶液(5∶95,V/V)作流动相,流速1.0 mL/m in。结果表明,STX和dcSTX衍生物在7m in内获得完全分离。在空白样品中添加标准品使浓度0.01~2.0μg/g,得到峰面积与浓度呈良好线性,线性相关系数>0.998。添加浓度在0.1、0.8和1.6μg/g的回收率为87%~97%(n=8);相对标准偏差为8%~13%。方法检出限(S/N=3)分别为STX 1.0 ng/g和dcSTX 0.3 ng/g。另外,采用四极杆-飞行时间质谱(Q-TOF-MS)对STX和dcSTX衍生物进行了结构解析。  相似文献   

9.
王昕洁  王继宇  李恒  惠先  高文运 《色谱》2017,35(8):837-842
以3,3′-二氨基联苯胺(DAB)为衍生化试剂,建立了柱前衍生高效液相色谱测定酒中双乙酰含量的分析方法。双乙酰与衍生化试剂DAB在室温条件下反应10 min进行柱前衍生,并采用Shim-pack VP-ODS色谱柱(250mm×4.6 mm,4.6μm)对衍生化产物进行分离分析,以水-甲醇为流动相进行梯度洗脱,流速为0.7 mL/min,并采用配有二极管阵列检测器(DAD)的高效液相色谱仪测定,检测波长为254 nm。该法在双乙酰浓度为0.20~180μmol/L的范围内呈现良好的线性关系,相关系数(R2)为0.999,检出限(S/N=3)为0.09μmol/L,定量限(S/N=10)为0.20μmol/L,日内精密度(RSD)为1.28%(n=6)。实际酒样品的加标回收率为92.0%~103.6%,RSD为0.69%~3.45%(n=3)。该法简便快捷,结果准确,稳定性好,可以用于白酒及红酒中双乙酰含量的测定。  相似文献   

10.
建立了固相萃取前处理-高效液相色谱-串联质谱(HPLC-MS/MS)法测定葡萄干中105种农药残留的分析方法。样品以乙腈提取,采用TPH固相萃取小柱净化。待测物经Zorbax Eclipse Plus C18柱(3.0 mm×100 mm,1.8μm)分离,以乙腈-0.1%甲酸水为流动相梯度洗脱;采用电喷雾正离子源(ESI+)、多重反应监测(MRM)模式检测;以基质匹配标准曲线外标法定量。105种农药在各自线性范围内相关系数均大于0.991;检出限(S/N≥3)为0.03~3.0μg/kg;定量限(S/N≥10)为0.1~10.0μg/kg;3个加标水平(1,2,10倍定量限)下,回收率在67.3%~117.8%之间,相对标准偏差在3.9%~20%之间。适用于葡萄干样品中农药残留的日常检测。  相似文献   

11.
A rapid and practical method for direct detection of the herbicides (glufosinate, bialaphos and glyphosate) in anion-exchange chromatography has been developed with integrated pulsed amperometric detection (IPAD). The electrochemical behavior of these herbicides showed catalytic currents based on the oxidation of amines in their structures. Waveform in IPAD was similar to that for amino acids, which exhibited adsorption/desorption catalytic features at gold electrode surface in alkaline solution. Under optimized conditions, detection limits (signal-to-noise ratio of 3) for glufosinate, bialaphos and glyphosate were 20, 65 and 50 ng ml(-1), respectively, with correlation coefficients of 0.995, 0.997 and 0.996 over concentration ranges of 0.1-45, 0.3-32 and 0.1-50 microg ml(-1), respectively. The relative standard deviations (n=5) were 1.7-3.0%. The present method was successfully applied to the determination of glyphosate in urine and serum.  相似文献   

12.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

13.
We developed a simple and rapid method for the simultaneous determination of phosphorus-containing amino acid herbicides (glyphosate, glufosinate, bialaphos) and their major metabolites, aminomethylphosphonic acid (AMPA) and 3-methylphosphinicopropionic acid (MPPA), in human serum. Serum samples were filtrated through an ultrafiltration membrane to remove proteins. The filtrate was then washed with chloroform, and injected into a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Chromatographic separation was achieved on a hydrophilic interaction chromatography (HILIC) column. Determination of the target herbicides and metabolites was successfully carried out without derivatization or solid phase extraction (SPE) cartridge clean-up. The recoveries of these compounds, added to human serum at 0.2μg/mL, ranged from 94% to 108%, and the relative standard deviations (RSDs) were within 5.9%. The limits of detection (LODs) were 0.01μg/mL for MPPA, 0.02μg/mL for AMPA, 0.03μg/mL for both glyphosate and glufosinate, and 0.07μg/mL for bialaphos, respectively.  相似文献   

14.
We developed a rapid and sensitive method using in-capillary derivatization and laser-induced fluorescence (LIF) detection for the fully automated analysis of organophosphorus pesticides (OPPs), including glufosinate, aminomethylphosphonic acid (AMPA) and glyphosate by micellar electrokinetic chromatography (MEKC). The potential of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as in-capillary derivatization reagent is described for the first time. The unique feature of this MEKC method is the capillary being used as a small reaction chamber. In in-capillary derivatization, the sample and reagent solutions were injected directly into the capillary by tandem mode, followed by an electrokinetic step to enhance the mixing efficiency of analytes and reagent plugs in accordance with their different electrophoretic mobilities. Standing a specified time for reaction, the derivatives were then immediately separated and determined. Careful optimization of the derivatization and separation conditions allowed the determination of glufosinate, AMPA and glyphosate with detection limits of 2.8, 3.6 and 32.2 ng/mL, respectively. These detection limits were comparable to those of 1.4, 1.9 and 23.8 ng/mL obtained from conventional pre-capillary derivatization. Furthermore, repeatability better than 0.40% for migration time and 3.4% for peak area, as well as shorter migration time, was obtained. The method was successfully applied to the analysis of spiked river water sample with satisfactory results.  相似文献   

15.
For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation‐exchange resin. In summary, the cleanup procedure with cation‐exchange resin developed in this study avoids interactions as described above and is applicable to calcium‐rich drinking water samples. After derivatization with 9‐fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real‐world drinking water samples of 98±9, 100±16 and 101±11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.  相似文献   

16.
建立了一种梯度洗脱-电导抑制-离子色谱同时测定4种强极性农药的方法。通过对淋洗液及浓度、色谱柱、柱温、进样量等条件的优化,得到最佳检测条件:色谱柱为IonPac AS11-HC分析柱及IonPac AG11-HC保护柱,柱温33℃,进样量50μL,RFIC系统的淋洗液自动发生器在线产生的KOH作为淋洗液,梯度洗脱,淋洗液流速:1.00 mL/min。结果表明:调节膦、乙烯利、草铵膦、草甘膦在0.1~2.0μg/mL质量浓度范围内具有良好的线性关系,相关系数(R2)均大于0.999;4种化合物的平均回收率为93.0%~101.9%,RSDs在1.5%~3.4%;其检出限分别为2.0,8.0,5.0,40μg/L;与水中的Cl-,NO2-,SO42-,NO3-离子有较好的分离。本方法适用于饮用水中强极性农药草甘膦、草铵膦、乙烯利和调节磷的测定。  相似文献   

17.
何书海  曹小聪  吴海军  李腾崖  张鸣珊  梁焱  陈表娟 《色谱》2019,37(11):1179-1184
建立了一种简便、直接进样的超高效液相色谱-三重四极杆质谱法(UPLC-MS/MS)快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利的残留。环境水样经0.22 μm滤膜过滤或冷冻离心去除杂质后,滤液无需衍生化直接进行定量分析。4种农药通过Metrosep A Supp 5柱(150 mm×4.0 mm,5 μm)分离,以碳酸氢铵-氨水溶液为流动相进行梯度洗脱,在负离子模式下以MRM方式进行检测。结果表明,4种农药在0.50~50.0 μg/L范围内相关系数(r)均大于0.999,线性关系良好,方法检出限为0.05~0.09 μg/L。实际水样在低、中、高3种加标浓度水平下,回收率分别为76.3%~108%、83.0%~107%和87.0%~105%,相对标准偏差分别为2.0%~12.3%、2.4%~5.6%和2.7%~6.8%。使用该方法对海南省34个水样进行测定,其中30个饮用水源地水样中均未检出4种农药,槟榔园附近3个水样均检出草甘膦和氨甲基膦酸,香蕉园附近的1个水样检出草铵膦和氨甲基膦酸。与传统的衍生化方法比较,该方法操作简便,重现性好,准确性高,不受基体干扰,适用于环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利的残留检测。  相似文献   

18.
Summary Organosphosphate pesticides have been found extractable by headspace solid-phase microextraction (SPME), and the best conditions of their extraction from human whole blood and urine samples have been investigated. The body fluid samples containing nine pesticides (IBP, methyl parathion, fenitrothion, malathion, fenthion, isoxathion, ethion, EPN and phosalone) were heated at 100°C in a septum-capped vial in the presence of various combinations of acid and salts, and SPME fiber was exposed to the headspace of the vial to allow adsorption of the pesticides before capillary gas chromatography (GC) with nitrogen-phosphorus detection. The heating with distilled water/HCl/(NH4)2SO4/NaCl and with distilled water/HCl gave the best results for urine and whole blood, respectively. Recoveries of the nine pesticides were 0.8–10.6% except for phosalone (0.03%) for whole blood, and 3.8–40.2% for urine. The calibration curves for the pesticides showed linearity in the range of 50–400 ng/0.5 mL for whole blood except for malathion (100–400 ng/0.5 mL whole blood) and 7.5–120 ng/0.5 mL for urine except for phosalone (15–120 ng/0.5 mL urine) with detection limits of 2.2–40 ng/0.5 mL for whole blood and 0.8–12 ng/0.5 mL for urine.  相似文献   

19.
建立了Simple-QuEChERS Nano结合气相色谱-串联质谱(GC-MS/MS)同时检测血液中97种农药的方法,并对基质条件、提取溶剂以及净化材料进行了优化。0.5 mL血液样品经3倍水稀释混匀,使用2.0 mL乙酸乙酯提取后振荡、离心,过Simple-QuEChERS Nano净化柱及0.22μm有机微孔滤膜后,采用多反应监测模式(MRM)进行分析。结果显示,97种农药在一定质量浓度范围内线性关系良好(r2≥0.9873),除丙烯菊酯(检出限和定量下限分别为11.03、36.76 ng/mL)外,其余农药的检出限为0.06~4.27 ng/mL,定量下限为0.18~14.24 ng/mL。采用空白全血进行加标回收实验,97种农药在100、200、400 ng/mL 3个加标水平下的回收率为32.2%~120%,日内精密度为1.9%~11%,日间精密度为3.6%~13%。该方法由传统QuEChERS方法改进,绿色环保、操作简单、快速高效,可用于血液中多种农药的同时检测,用于实际案件血液样品中农药的筛查与定性定量检验,获得了良好的结果。  相似文献   

20.
This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real water and soil samples from different areas. All the detections were confirmed by acquiring two transitions for each compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号