首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
Impregnation, mechanical mixing and hydrothermal treatment methods were used to introduce molybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts were studied by means of XRD, FT-IR, NH3-TPD, TPR and XPS. The effects of Mo content and reaction time on stream on the aromatization of propane were investigated. It was found that the performance of the Mo/HZSM-5 catalyst prepared by the hydrothermal treatment method was much better than that of the other two catalysts. For example, under the reaction conditions of 823 K and 600 h-1, propane conversion and aromatics selectivity over the catalyst prepared by hydrothermal pretreatment could reach 89.17% and 78.56%, respectively. XRD and XPS results showed that the Mo species in the catalysts prepared by hydrothermal treatment were highly dispersed on the surface of the HZSM-5, and larger amounts of them could penetrate into the HZSM-5 channel, as compared with the other two kinds of catalysts. These factors may be responsi  相似文献   

2.
The influence of adding Fe,Cr,Co,and Ga into 3%Mo/HZSM-5 catalyst on methane aromatization,and the influence of additives ratio on methane conversion,selectivity to hydrocarbons and coke,as well as distribution of aromatics were investigated.The experimental results showed that the addition of Fe,Cr,Co and Ga promoted the dehydrogenation and dissociation of methane.The results of NH3-TPD indicated that the acidity of HZSM-5 was changed by adding Fe and Co components,consequently the catalytic properties of Mo/HZSM-5 were changed.It was also revealed that strong acid sites were the center of methane aromatization.The results of XRD characterization showed that the crystallinity of Mo on ZSM-5 zeolite was increased after adding Fe,Co additives.  相似文献   

3.
Catalytic performance of W/HZSM-5 in selective catalytic reduction of NO by acetylene was investigated in a reaction system with 1600 ppm of NO, 800 ppm of C2H2, and 9.95% of O2 in He. It was found that promotional effect of tungsten on the reaction is strongly affected by catalyst preparation conditions and Si/Al ratio of the parent zeolite. A better dispersion of tungsten on HZSM-5 and relatively more monomeric tungsten species were found on 8%W/HZSM-5 prepared by impregnation of the zeolite with lower SiO2/A1203 ratio (25) in ammonic ammonium tungstate solution and calcination of the resulting material at higher temperature (550 ℃). The highest NO conversion to N2 of 86.3% in the reaction system was obtained at 350 ℃ over the catalyst thus prepared. The mechanism of monomeric tungsten species improving the C2H2-SCR can be attributed to accelerating the formation of active nitrate species.  相似文献   

4.
The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h-1 and CH4/C3H8 (mol ratio)=5:1. The propane conversion and the aromatic selectivities were up to 99% and 60% over the catalyst respectively, while methane conversion had an induction period with the highest conversion of 30%. The structure and surface acidity of the catalysts were characterized by XRD, NH3-TPD and TG-DTA. The influences of reaction and regenerative conditions on the activity and selectivity were also investigated.  相似文献   

5.
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature.The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.  相似文献   

6.
The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co-precipitantion method.the effects of introduction of La promoter and the reaction temperature on the catalytic performance were studied.It was found that the introduction of La into Ni/Fe catalysts is helpful to increase the selectivity to hydrogen and the stability of the catalysts.The results of XRD and XPS characteri-zation show that the structure of the catalyst was changed during the reaction.The existence of LaFeO3 species is possibly the main reason of the increase of the catalyst stability.  相似文献   

7.
The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully blending(ZS-MM). The used catalysts were characterized by XRD, N_2 adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nHthan the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.  相似文献   

8.
Long-term stability test of Mo/HZSM-5-N catalysts(HZSM-5-N stands for nano-sized HZSM-5) in methane dehydroaromatization(MDA)reaction has been performed with periodic CH4-H2 switch at 1033-1073 K for more than 1000 h.During this test,methane conversion ranges from 13% to 16%,and mean yield to aromatics(i.e.benzene and naphthalene) exceeds 10%.N2-physisorption,XRD,NMR and TPO measurements were performed for the used Mo/HZSM-5 catalysts and coke deposition,and the results revealed that the periodic hydrogenation can effectively suppress coke deposition by removing the inert aromatic-type coke,thus ensuring Mo/HZSM-5 partly maintained its activity even in the presence of large amount of coke deposition.The effect of zeolite particle size on the catalytic activity was also explored,and the results showed that the nano-sized zeolite with low diffusion resistance performed better.It is recognized that the size effect was enhanced by reaction time,and it became more remarkable in a long-term MDA reaction even at a low space velocity.  相似文献   

9.
The optimum Mo/[H~+] ratio per unit cell of the active precursors in Mo/HZSM-5 catalysts for methane dehydro-aromatization, measured by 1H MAS NMR, was found to be about 1 when adjusting the acid sites by altering either the SiO2/Al2O3 ratios or the Mo loading. This implies that a concerted interaction between the Mo species and the Bronsted acid sites probably features the bifunctionality of the Mo/HZSM-5 catalyst. On the other hand, it was found that the driving force for Mo species to move into the HSZM-5 zeolite channels and the interaction between the Mo species and the Bronsted acid sites are closely and proportionably related with the amount of Bronsted acid sites per unit cell.  相似文献   

10.
The effect of steam-treatment to HZSM-5 zeolite and Mo/HZSM-5 with a steaming time range of 0.5-1 h on the catalytic performance of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalyst prepared with impregnation has been studied in detail in combination with the characterization of 1H MAS NMR technique. Both the deactivation rate constant (kd) and the Brnsted acid sites per unit cell were calculated to quantitatively evaluate the stability of Mo/HZSM-5 catalysts treated with steam at 813 K before and after impregnation of molybdenum species, and the corresponding variation of their Brnsted acid sites. The results reveal that a V-shape relationship between kd and the number of B1 acid sites per unit cell is presented on Mo/HZSM-5 catalyst under the tested steam-treatment and reaction conditions.  相似文献   

11.
La/HZSM—5催化剂上丙烷的芳构化反应研究   总被引:5,自引:0,他引:5  
采用浸渍法和离子交换法制备了La/HZSM-5分子筛催化剂,用于丙烷芳构化反应,利用XRD,SPS,FT-IR,NH3-TPD技术考察了La对HZSM-5分子筛结构和表面酸性的影响,引入La后能显著提高HZSM-5的丙烷芳构化活性,其中由离子交换法得到的催化剂效果最佳,在反应温度550度,空速600h^-1条件下,丙烷转化率和芳烃选择性分别达到94.58%,68.99%,在La/HZSM-5中分子筛结晶度下降,B酸中心减少,L酸中心增多,离子交换法制备的催化剂比浸渍法催化剂的这种变化更显著,同时更有利于La3 进入分子筛孔道内,并与分子筛产生强相互作用,新增加的L酸中心可能是芳构化反应的活性中心。  相似文献   

12.
采用等量浸渍法制得一系列不同担载量的Mo/HZSM-5催化剂,运用XRD和FTIR方法考察了Mo物种在催化剂表面的分散状态,首次采用微分吸一热技术对Mo/HzSM-5催化剂的表面酸性进行表征。同时研究了催化剂对丙烷芳构化的反应活性。结果表明:对于担载Mo的HZSM-5分子筛催化剂,Mo物种在HZSM-5分子筛表面上顺序为HZSM-5〉1%Mo/HZSM-5〉2%Mo/HZSM-5分子筛本身表面的酸  相似文献   

13.
高温水蒸气处理对ZnHZSM-5活性中心的影响   总被引:8,自引:0,他引:8  
应用X-射线衍射、能谱表面分析和吡啶吸附红外光谱研究了高温水蒸气处理对HZSM-5和ZnHZSM-5催化剂的影响,并以丙烷芳构化作为探针反应考查了催化活性中心的变化.高温水蒸气处理对分子筛的结晶度影响不大,但水蒸气处理使得分子筛骨架铝脱出,脱出的铝在表面富集,分子筛锌交换位的骨架铝脱出较难,脱铝导致分子筛的酸性减弱.高温水蒸气处理后的HZSM-5和ZnHZSM-5催化剂的丙烷反应活性都降低,在ZnHZSM-5上丙烯的选择性增加,反映了具有脱氢活性的锌的强L酸中心数目相对B酸中心减少较少,进一步说明了处于离子交换位的锌离子对骨架铝有保护作用  相似文献   

14.
The promotional effect of Fe-Mo species introduced into HZSM-5 (Zeolyst Int., SiO2/Al2O3 ≈ 30) zeolite catalyst by the wetness impregnation method for the 1-hexene aromatization was investigated. The structure and catalytic performance for the aromatization of 1-hexene over xFeyMo-ZSM-5 catalysts in comparison with unmodified HZSM-5 catalysts were studied. The xFeyMo-ZSM-5 catalysts contain fixed loading (5 wt%) and variable Fe/Mo ratio. The catalysts were characterized by BET, ICP-AES, HRSEM-EDS, HRTEM, XRD, FTIR, H2-TPR, NH3-TPD, and pyridine DRIFT spectroscopy. The characterization data confirmed the existence of Fe and Mo species in the zeolite matrix. With Fe and Mo species implementation to HZSM-5 zeolite, the amount of the acid sites decreased, but the selectivities to C9+ aromatics increased. The catalyst evaluation was performed at 350 °C for 6 h on-stream at atmospheric pressure using a fixed-bed quartz tube reactor. The selectivity to products of different carbon number was affected by the Fe/Mo ratio within the zeolite. It was found the product distribution of grouped fractions of C1–C17+ from the liquid product. The results indicate that the optimum ratio of Fe/Mo is 1–1.5. The highest selectivity for gasoline and distillate ranges was obtained for the 2.5wt%Fe2.5wt%Mo- and 3wt%Fe2wt%Mo-ZSM-5 samples, which was higher than that for parent HZSM-5 catalyst.  相似文献   

15.
纳米HZSM-5沸石的骨架热稳定性及其作为催化剂的可再生性   总被引:1,自引:0,他引:1  
采用高温焙烧和积炭失活-空气烧炭再生方法研究了纳米ZSM-5沸石的骨架热稳定性和用纳米HZSM-5沸石制成的芳构化催化剂的再生重复使用性能,还采用XRD、TG、FTIR、NH3-TPD和N2物理吸附,以及C4液化气固定床临氢芳构化反应对沸石和催化剂样品的物化性质作了表征.结果表明:纳米ZSM-5沸石具有良好的骨架热稳定性,在马弗炉的静止空气气氛中恒温焙烧800℃时仍可保持骨架结构.纳米HZSM-5型芳构化催化剂在C4液化气固定床临氢芳构化反应中不但活性稳定性好,而且可以再生重复使用,具有很高的工业应用价值.  相似文献   

16.
MgO/HZSM-5中MgO分散状态和催化性能的关系   总被引:15,自引:0,他引:15  
以硝酸镁、醋酸镁为前身物,通过浸渍法制备了不同系列MgO/ HZSM-5催化剂,用XRD、XPS方法研究了MgO在HZSM-5上的分散状态,用NH3-TPD方法考察了催化剂的酸性,用常压连续流动微型反应装置考察MgO/ HZSM-5在甲苯甲醇烷基化反应中的催化性能.发现前身物不同,MgO在HZSM-5上的分散状态也不同,催化剂的活性和选择性与MgO分散状态密切相关.MgO负载量相同时,在以硝酸镁为前身物制备的催化剂中,MgO在HZSM-5内外表面均有分散,催化剂的对位选择性较高,而活性较低;在以醋酸镁为前身物制备的催化剂中,MgO较多分布在HZSM-5外表面,催化剂的活性较高,但选择性较低.使用醋酸镁为前身物,通过二次浸渍和高温水汽处理,适当改变MgO在分子筛表面的分布并使孔道窄化,可在活性降低较少的情况下显著提高催化剂对二甲苯选择性.  相似文献   

17.
稀土对HZSM—5上正己烷芳构化性能的影响   总被引:5,自引:0,他引:5  
以正己烷为原料,在连续流动常压反应装置上考察了稀土改性HZSM-5沸石催化剂的芳构化和裂解性能,用红光谱,X射线衍射,X光电子能谱等研究了这些离子改性的沸石催化剂的表面性质,比较了机械混合法和浸渍法引入稀土对催化剂性能的影响,稀土可提高混合法制备的改性催化剂的芳构化性能,B酸中心是正已烷构化的活性中心,L酸中心则对正己烷的裂解起重要作用。  相似文献   

18.
用浸渍法制备了一系列不同Te含量的MoBiTeO/SiO2催化剂, 并用XRD、Raman、XPS、NH3-TPD、吡啶吸附FT-IR和催化剂性能评价等方法考察了Te组分对催化剂的结构、酸性及其丙烷选择氧化制丙烯醛性能的影响. 结果表明, 催化剂中Mo氧化物与Te氧化物之间发生了相互作用, 通过形成Mo—O—Te 桥氧键生成了Te多钼酸盐物种,在一定程度上分散了Mo-O活性中心, 同时TeOx具有脱除丙烯α-H、插氧并将其转化为丙烯醛的功能, 因此, 在MoBiO/SiO2催化剂中添加Te组分使丙烯醛选择性有显著的提高. 但是Te的加入同时也使催化剂中B 酸增强, 这不利于丙烯醛生成. 因此, Te添加量有一最佳范围, nTe/nMo为0.05-0.1 时催化剂具有较好的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号