首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Propane Aromatization over Mo/HZSM-5 Catalysts
摘    要:Impregnation, mechanical mixing and hydrothermal treatment methods were used to introduce molybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts were studied by means of XRD, FT-IR, NH3-TPD, TPR and XPS. The effects of Mo content and reaction time on stream on the aromatization of propane were investigated. It was found that the performance of the Mo/HZSM-5 catalyst prepared by the hydrothermal treatment method was much better than that of the other two catalysts. For example, under the reaction conditions of 823 K and 600 h-1, propane conversion and aromatics selectivity over the catalyst prepared by hydrothermal pretreatment could reach 89.17% and 78.56%, respectively. XRD and XPS results showed that the Mo species in the catalysts prepared by hydrothermal treatment were highly dispersed on the surface of the HZSM-5, and larger amounts of them could penetrate into the HZSM-5 channel, as compared with the other two kinds of catalysts. These factors may be responsi


Propane Aromatization over Mo/HZSM-5 Catalysts
Abstract:Impregnation, mechanical mixing and hydrothermal treatment methods were used to introduce molybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts were studied by means of XRD, FT-IR, NH3-TPD, TPR and XPS. The effects of Mo content and reaction time on stream on the aromatization of propane were investigated. It was found that the performance of the Mo/HZSM-5 catalyst prepared by the hydrothermal treatment method was much better than that of the other two catalysts. For example, under the reaction conditions of 823 K and 600 h-1, propane conversion and aromatics selectivity over the catalyst prepared by hydrothermal pretreatment could reach 89.17% and 78.56%, respectively. XRD and XPS results showed that the Mo species in the catalysts prepared by hydrothermal treatment were highly dispersed on the surface of the HZSM-5, and larger amounts of them could penetrate into the HZSM-5 channel, as compared with the other two kinds of catalysts. These factors may be responsible for their high activities for propane aromatization. IR and NH3-TPD studies indicated that the number of Bronsted acid centers decreased and the Lewis acid centers increased after Mo was introduced into the HZSM-5 zeolite.
Keywords:Mo/HZSM-5  propane  aromatization  preparation  hydrothermal treatment
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号