首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
徐晨洪  韩优  迟名扬 《化学进展》2010,22(12):2290-2297
光催化技术可以利用太阳能将水转化为氢能以及降解环境中的有机污染物,具有成本低廉、环境友好等特点, 是解决全球能源危机和当前环境污染的重要途径之一。 Cu2O禁带宽度介于2.0-2.2eV之间,是一种具有可见光响应的p型氧化物半导体,在光催化领域具有良好的应用前景,逐渐成为国内外研究的热点。本文介绍了Cu2O晶体特殊的网络结构和能带结构特点以及对其进行的掺杂和复合等改性研究,概述了Cu2O及其改性材料在光解水制氢及光降解有机污染物方面的研究进展,阐明提高Cu2O光催化效率的关键是抑制光生载流子的复合和Cu2O的光腐蚀。指出了基于Cu2O的光催化反应中存在的问题,并对未来的研究方向做出了展望。  相似文献   

2.
立方状和球状氧化亚铜的制备及其光催化性质   总被引:4,自引:1,他引:3  
宋继梅  张小霞  焦剑  梅雪峰  田玉鹏 《应用化学》2010,27(11):1328-1333
利用室温液相还原法和低温水热法制备了立方状和球状氧化亚铜,通过X射线衍射、场发射扫描电子显微镜对合成产物进行了表征。 以合成产物光催化降解偶氮染料甲基橙为模型,研究了不同形貌Cu2O的光催化性能,结果表明,球状氧化亚铜对甲基橙的脱色率达89.0%,球状氧化亚铜/Fenton复合体系中甲基橙的脱色率达98.2%。 初步探讨了Cu2O粉体催化降解甲基橙的过程和机理。  相似文献   

3.
基于半导体的太阳能光催化分解水制氢技术是一种环境友好、潜力巨大的绿色氢能制造方案.常用的块体半导体材料一般具有较弱的可见光吸收、快速的光生载流子复合以及较低的光催化制氢效率等缺点.因此,设计开发具有宽光谱光吸收、稳定性好、催化活性高的太阳能光催化材料是促进光催化制氢发展的关键,也是该研究方向的挑战之一.硫化镉纳米材料是...  相似文献   

4.
TiO2作为一种重要的半导体材料,具有光催化活性高、化学性质稳定、折射率高等特性,因而在光催化、陶瓷、涂料、化妆品及光电子器件等领域有着十分广泛的应用前景.尤其是近年来,核-壳结构的复合颗粒以及空心和介孔TiO2胶体颗粒的出现,使TiO2材料增添了许多独特的优异性能,相应研究成为热点.  相似文献   

5.
铌基半导体光催化材料因其具有独特的晶体结构和能带结构在光催化分解水制氢领域受到科研工作者的高度关注.然而,大多数铌基半导体光催化剂仅能够在紫外光驱动下实现光催化分解水制氢,具有可见光响应的铌基半导体光催化剂不仅数量少而且活性较低,因此发展新型纳米铌基半导体光催化剂并实现其高效可见光催化分解水产氢具有重要的学术和实用意义.具有烧绿石构型的Sn_2Nb_2O_7材料由于具有较窄的禁带宽度(2.4 e V)和合适的导带和价带电势在可见光催化分解水制氢方面引起了科研人员广泛的兴趣.然而,目前报道的利用高温固相法制备的块体Sn_2Nb_2O_7材料由于颗粒尺寸较大和比表面积较小而导致光催化活性较差.因此,发展一种简便高效的制备方法实现纳米Sn_2Nb_2O_7材料的可控制备进而提高其可见光催化活性仍具有一定的挑战性.我们发展了一种简便的两步水热合成方法实现了Sn_2Nb_2O_7纳米晶的可控制备.扫描电镜和透射电镜测试结果表明,通过两步水热法得到的Sn_2Nb_2O_7纳米颗粒具有较好分散度,其平均颗粒尺寸为20 nm.X射线衍射测试结果也进一步证明,通过两步水热法可以实现Sn_2Nb_2O_7纳米晶的可控制备.比表面积测试结果表明,Sn_2Nb_2O_7纳米晶的比表面积约为52.2 m~2/g,远远大于固相法制备的块体Sn_2Nb_2O_7材料(2.3 m~2/g).大量研究表明,大的比表面积有利于半导体催化材料催化活性的提升.通过考查所制备的Sn_2Nb_2O_7纳米晶的可见光分解水制氢能力,对其催化性能进行了评价.研究结果表明,以乳酸为空穴消耗剂,负载0.3wt.%Pt纳米颗粒作为助催化剂的Sn_2Nb_2O_7纳米晶表现出优异的可见光催化分解水产氢性能,其产氢速率是块体Sn_2Nb_2O_7材料的5.5倍.Sn_2Nb_2O_7纳米晶可见光催化分解水产氢性能提高的主要原因是其具有高分散度的纳米颗粒、较大的比表面积和更正的价带电势.首先,颗粒尺寸的纳米化能够显著减小光生电子和空穴的迁移距离,实现光生载流子快速迁移到催化剂表面进而参与催化反应;其次,大的比表面积能够提供更多的催化活性位点,进而有利于催化活性的提高;最后,X射线光电子能谱测试表明,Sn_2Nb_2O_7纳米晶具有更正的价带电势,研究表明,价带电势越正,其光生空穴氧化能力越强.在光催化分解水制氢过程中,具有较强氧化能力的光生空穴通过与空穴牺牲剂乳酸快速反应而被消耗掉,抑制了光生电子与空穴的复合,进而导致其具有较高的光催化产氢活性.  相似文献   

6.
李萍  钟顺和 《应用化学》2006,23(6):586-0
光催化材料Cu/Fe2O3-TiO2的结构和性能;复合半导体;Cu/Fe2O3-TiO2;光催化材料;光响应性能  相似文献   

7.
钽酸盐光催化材料往往具有较高的光催化活性.近年报道的钽酸盐光催化剂主要采用传统高温固相法制备,该方法不可避免地导致高温烧结,使合成的钽酸盐颗粒较大,比表面积较小,而且该方法具有不可克服的晶体转变、结晶度差、分解、挥发和纯度低等缺点,使制备的光催化剂活性较低.而纳米材料由于粒径小,提高了电子和空穴的扩散速度,大大降低了电子和空穴在材料内的复合几率,从而使光催化材料活性大幅提高.此外,粒径减小也使表面原子迅速增多,减小了光的漫反射,同时也使光吸收不易达到饱和,有利于提高光吸收效率.因此,制备纳米材料是提高半导体光催化剂活性的有效手段.目前,采用湿化学的溶液合成方法能在较低温度下获得粒度小且均匀、计量比准确的光催化剂粉末,但是合成钽酸盐光催化剂的水溶性钽前体即乙醇钽(或氯化钽)价格昂贵,而且对潮湿极端敏感易水解,使产物纯度降低,不适合工业化生产.近年来,尽管有文献报道以Ta2O5为原料利用水热、溶胶-凝胶和共沉淀等方法制备钽酸盐,但其合成条件苛刻,合成步骤复杂,合成周期较长,耗能大,产物产量较低且不均匀,很难实现产物的形貌控制来筛选出适合光催化反应的材料.目前关于纳米钽酸盐光催化材料形貌控制方面的研究鲜有报道,主要是由于Ta2O5极难溶解,很难实现液相合成.因此,纳米钽酸盐光催化材料的可控制备是研究的难点.我们发展了熔盐-水热制备钽酸盐新方法,实现了K1.9Na0.1Ta2O6·2H2O的可控制备.利用熔盐法制备一种可溶性钽酸盐前驱体,再通过水热法在液相进一步反应制得纳米钽酸盐光催化材料K1.9Na0.1Ta2O6·2H2O,通过控制反应条件实现了纳米钽酸盐K1.9Na0.1Ta2O6·2H2O的形貌调控,得到了纳米球、微球、去顶八面体形貌和类似榴莲形貌等不同形貌,而利用其它制备方法很难控制钽酸盐的形貌.另外,研究了制备材料吸附和光催化降解罗丹明B的性能,发现该材料光催化活性与形貌直接相关.表征结果表明,制备样品的X射线衍射(XRD)谱图尖锐,结晶较好,其各衍射峰位置均与K2Ta2O6一致,为纯相烧绿石结构,属于立方晶系,空间群为Fd3m.通过分析合成材料的元素组成及含量,确定K:Na:Ta比例近似为1.9:0.1:2.为了进一步研究属于烧绿石型化合物K1.9Na0.1Ta2O6·2H2O的结构,对不同形貌材料进行了红外光谱测试,所有样品在450–1000 cm–1的谱峰可归属于(K, Na)–O和Ta–O键的振动,3300 cm–1左右为晶体结构中水的羟基伸缩振动峰,1720 cm–1左右是晶体结构中水的弯曲振动峰.可以看出,不同形貌材料的红外谱图吸收带宽度和位置十分相似,只存在小的偏移和变化,进一步表明不同形貌的材料具有相似的晶体结构,与XRD结果一致.差热-热重分析确定了结构中所含结晶水数量近似为2.光催化性能测试结果表明,具有纳米球形貌的材料比表面积较大,因而光催化活性最高.  相似文献   

8.
社会经济快速发展的同时, 也带来了日益严峻的环境污染问题. 半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景. 作为最具有代表性的半导体光催化材料, TiO2因为其禁带宽度(3.2 eV)比较大, 只能被紫外光激发, 因而对太阳能的利用率较低. 作为一种最简单的含铋层状氧化物, Bi2WO6的禁带宽度(2.7 eV)相对较小, 可以部分利用太阳光中的可见光, 因而受到广大研究者的青睐. 但是, Bi2WO6光催化材料的可见光响应范围较窄, 仅能被波长小于450 nm的光激发, 且激发后的光生载流子容易复合, 导致光催化效率不高. 因此, 迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合, 来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片, 充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建, 来提高Bi2WO6的光催化活性. 结果表明, 随着Na2S·9H2O用量从0增加到1.5 g, 所得催化剂的光活性不断提高, X3B的降解速率常数由0.40×10-3min-1增加到6.6×10-3min-1, 催化剂活性提高了16.5倍. 当进一步增加Na2S·9H2O的用量时(1.5-3.0 g), 复合催化剂的光活性下降. 这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+ Na2S = 2NaBiS2), 占据了催化剂的活性位点, 阻碍了染料分子与催化剂的直接接触. Bi2WO6@Bi2S3异质结纳米片光活性的提高, 可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围; 另一方面, Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离, 抑制了光生电子-空穴的复合, 从而提高了复合催化剂的催化效率. 本研究为其他半导体复合材料的原位生长制备提供了新的思路.  相似文献   

9.
化石燃料燃烧的排放物是目前最严重的环境污染源,其中含氮有机物燃烧产生的NOx等是污染大气和形成雾霾的主要污染物.伴随石油存量的不断减少、重质石油的更多利用以及机动车的大规模增加,由此引起的污染问题日趋严重,因此发展高效的燃油脱氮技术对保护环境意义重大.光催化氧化是近几十年发展起来的新型高级氧化还原技术,由于其可以利用太阳光且在室温下进行,成本低易于进行,是一类理想的燃油脱氮技术.在众多光催化材料中,α-Fe2O3无毒、廉价且具有合适的带隙(2.3 eV),是目前公认较好的光催化材料.然而,在光催化过程中α-Fe2O3较快的电子-空穴复合速度以及过低的比表面积极大降低了其效率.通常,选择性地设计高比表面的多孔半导体金属氧化物被认为是一种简单且实效的提高光催化反应效率的方法.近年来,以金属有机框架结构(MOFs)为硬模板制备多孔金属氧化物的方法逐渐获得了科学家们的关注,这主要得益于热稳定性差的MOFs本身可以通过调控金属离子以及配体种类从而实现原位均匀的调节和修饰半导体金属氧化物,而且可以作为获得多孔性材料的基底.本文通过水热法合成了一种典型的MOFs即MIL-100(Fe).利用MIL-100(Fe)材料自身多孔性及热不稳定性,采用自模板法煅烧制备成多孔Fe2O3.制得的多孔Fe2O3亲油性较差,进行模拟燃油脱氮光催化反应时相互之间容易聚集成团,无法均匀分散于燃油体系中,导致光催化脱氮效率较低.因此,若能对所得多孔Fe2O3进行表面修饰使其亲油性增强并可均匀分散于于燃油体系中,无疑将促进底物的吸附,从而提高光催化燃油脱氮效果.Fe2O3表面带有正电荷,因此我们巧妙地选用一种阴离子表面活性剂十二烷基磺酸钠(SDS)作为修饰剂,采用简单的静电自组装方法制备了SDS/Fe2O3光催化剂.选用吡啶脱氮作为探针反应,考察了SDS/Fe2O3复合光催化剂的可见光光催化性能.结果表明,与未使用修饰剂的Fe2O3相比,SDS/Fe2O3中长链烷基的存在使其表面亲油性增强,能够在模拟燃油溶液中更加均匀地分散进而提高了脱氮效率.其中煅烧温度为450 C且修饰0.25%SDS的样品活性最佳,可见光(λ≥420 nm)照射240 min后吡啶的脱氮率接近100%.  相似文献   

10.
半导体光催化技术因其能够完全矿化和降解废水以及废气中的各种有机和无机污染物而受到越来越多研究者关注.尽管TiO2作为光催化剂显示了良好的应用前景,但其只对紫外光响应,该部分能量大约仅占太阳光谱的5%,从而限制了其实际应用.因此,开发新型可见光响应光催化剂成为光催化领域的研究焦点之一.石墨相氮化碳(g-C3N4)作为一种光催化材料,由于具有良好的热和化学稳定性以及可见光响应而备受关注.然而,单纯的g-C3N4由于光生电荷载流子易复合,光催化效果并不理想.为进一步提高g-C3N4的光催化活性,构建g-C3N4基异质结复合光催化材料被认为是增强g-C3N4光生电子-空穴分离效率的有效方法.CdMoO4作为一种光催化材料,与g-C3N4匹配的能带有利于光生电子-空穴的分离,从而提高g-C3N4的光催化活性.本文通过便利的原位沉淀-煅烧过程,制备了新颖的CdMoO4/g-C3N4异质复合光催化材料.复合材料的晶相构成、形貌、表面化学组分和光学特性等通过相应的分析测试手段进行表征.光催化活性通过可见光下催化降解罗丹明B水溶液来评价.结果显示,将CdMoO4沉积在g-C3N4表面形成复合材料可明显提高光催化活性,且当CdMoO4含量为4.8 wt%时达到最佳的光催化活性.这种显著增强的光催化活性可能是由于CdMoO4/g-C3N4复合物能够有效地传输和分离光生电荷载流子,从而抑制了光生电子-空穴的复合.电化学阻抗、瞬态光电流和稳定荧光光谱测试结果证实,通过CdMoO4与g-C3N4复合可有效增强电荷分离效率.此外,活性物捕获实验表明,在光催化过程中空穴(h+)和超氧自由基(?O2?)是主要活性物种.根据莫托-肖特基实验并结合紫外-可见漫反射吸收光谱,得到了单纯g-C3N4和CdMoO4的能带结构,提出了形成的II型异质结有助于增强光催化活性的机理.  相似文献   

11.
氧化亚铜(Cu_2O)是一种重要的P型半导体,并且具有无毒、廉价和易于控制合成等优点,被广泛应用于光催化领域.然而,低的光催化性能极大地限制了它的应用,特别是氧化亚铜立方体表面存在的障碍层严重阻碍了光生载流子传输,导致其几乎没有光催化活性.构建异质结构是提高氧化亚铜光催化性能的有效手段,然而,目前氧化亚铜异质结构的光催化性能和稳定性仍然需要大幅地提高.我们的前期研究发现,通过乙二胺在氧化亚铜表面轻微氧化刻蚀形成CuO/Cu_2O异质结构,在提高一定的光催化活性的同时能够大幅提高其稳定性.另外,在氧化亚铜表面负载金纳米颗粒也能够有效地增强氧化亚铜的光催化性能.因此,协同氧化铜和金纳米颗粒应该能够同时大幅地提高氧化亚铜的光催化活性和稳定性.本文利用乙二胺对氧化亚铜立方体进行轻微的氧化刻蚀,然后光还原负载金纳米颗粒,成功地制备了Au/CuO/Cu_2O异质结构. TEM和SEM结果表明,氧化铜和金纳米结构随机均匀地分散在氧化亚铜表面. XPS数据表明, Au/CuO/Cu_2O异质结构表面的二价铜主要来自生成的氧化铜纳米结构.表面残存的N元素表明,氧化铜由一价铜与乙二胺形成的配合物转变而来.在可见光下光催化降解甲基橙实验结果显示, Au/CuO/Cu_2O异质结构的光降解速率大幅地提高.通过表观量子效率的估算发现, Au/CuO/Cu_2O异质结构光催化活性是纯Cu_2O的123倍, Au/Cu_2O的5.4倍.光电流测试中, Au/CuO/Cu_2O异质结构的光电流也都明显高于Cu_2O, Au/Cu_2O和CuO/Cu_2O.不仅如此, Au/CuO/Cu_2O异质结构在8个循环后还能维持80%的光催化活性,远高于Au/Cu_2O的5个循环.由此可见, Au/CuO/Cu_2O异质结构具有增强的光催化活性和稳定性.通过电子顺磁共振(ESR)自由基测试发现,光催化降解过程中,羟基自由基是主要的氧化物种,而且Au/CuO/Cu_2O异质结构的自由基信号强度明显高于Cu_2O和CuO/Cu_2O,这也说明金和氧化铜的双异质结构提高了体系载流子分离效率. PL数据进一步证实了这一结论.另外,比表面积和暗吸附实验数据表明,轻微的表面积增加不会显著地改变三元异质结构的吸附和光催化性能.根据UV-Vis和价带XPS数据,我们认为轻微光吸收变化和价带改变不会显著影响异质结构的光催化活性.因此,金和氧化铜纳米结构协同增强光生载流子分离效率,是提高氧化亚铜光催化活性的主要原因.首先, Au/Cu_2O异质结构通过肖特基结和金颗粒的表面等离子共振效应提高光生载流子的分离效率.其次,氧化铜纳米结构不仅能与氧化亚铜形成II型异质结构,而且还能够作为保护层提高氧化亚铜的稳定性.另外,氧化铜纳米结构生成过程中去除了表面障碍层,减少空穴在氧化亚铜上的累积,进而提高氧化亚铜的稳定性.总之,氧化铜和金纳米结构的协同效应显著提高了体系的光催化活性和稳定性.  相似文献   

12.
张丙  惠丹屏  李英宣  赵赫  王传义 《催化学报》2017,(12):2039-2047
自从分解水产氢被首次报道以来,许多光催化剂被开发出来并用于光催化分解水产氢.然而,由于光生电子和空穴的复合率普遍较高,大部分的光催化剂分解水产氢效率都很低.因此,开发新型高效的光催化材料至关重要.具有(Bi_2O_2)~(2+)(A_(m-1)M_mO_(3m+1))~(2-)通式的Aurivillius相层状钙钛矿材料因具有独特的层状结构、元素可调性以及优异的电荷传输和分离能力而广泛应用于光催化分解水和去除有机污染物.此外,当该类层状钙钛矿被剥离成超薄纳米片时,其光催化性能进一步提高.为了进一步提高层状钙钛矿的载流子分离能力,将客体(如贵金属,半导体等)通过化学反应的途径插入到层状钙钛矿的层间区域,从而合成出复合层状钙钛矿被广泛发展和应用.然而,引入的客体主要是贵金属和半导体,这类客体的高成本和不均匀分布制约了其进一步的应用.由于廉价、无毒和稳定等优点,镍基材料如Ni,NiO,Ni_2O_3,NiS,NiS_2,Ni(OH)2和Ni(OH)x等被广泛用作增强电极材料的光电性能和催化剂的光催化分解水产氢性能的助催化剂.本文采用简单的原位化学反应法制备出镍基配合物Ni-CH_3CH_2NH_2(Ni-EA)插层的Ni-CH_3CH_2NH_2/H_(1.78)Sr_(0.78)Bi_(0.22)Nb_2O_7(Ni-EA/HSNNs)复合层状钙钛矿;然后采用X-射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱等手段对Ni-EA/HSNNs光催化剂进行了系统的研究.XRD结果表明,引入Ni~(2+)后,HSNNs层间距减小并且平行于钙钛矿层的晶面结晶度增强,证明HSNNs沿垂直于钙钛矿层的方向出现了层层组装.FTIR和XPS结果表明,引入的Ni~(2+)与HSNNs层间和表面的乙胺分子之间存在较强的相互作用,结合高分辨透射电镜图可知,Ni的存在形态可能为配合物Ni-EA.由此可见,当向HSNNs中引入Ni~(2+)时,Ni~(2+)和HSNNs层间和表面的乙胺分子反应生成带正电的配合物Ni-EA,由于Ni-EA与HSNNs的钙钛矿层带有异种电荷,两者之间存在较强的静电相互作用力,从而引起钙钛矿纳米片HSNNs的层层组装,最后形成Ni-EA/HSNNs复合层状钙钛矿.光催化分解水产氢性能测试结果表明,当引入0.5 wt%Ni时,复合层状钙钛矿表现出最优的光催化性能.与HSNNs(241.58μmol/h)相比,0.5%Ni-EA/HSNNs的光催化分解水产氢速率(372.67μmol/h)提高了0.54倍,表现出与0.5%Pt/HSNNs可比拟的光催化活性,可见,非贵金属Ni具有替代贵金属Pt的能力.进一步的研究表明,镍基配合物Ni-EA显著增强了催化剂的光生载流子的传输和分离能力,从而提高了其光催化分解水产氢性能.该文为光催化分解水产氢提供了一种简便的合成非贵金属配合物助催化剂的方法.  相似文献   

13.
由于人类面临的能源危机与环境污染问题日益严重,光催化技术作为最有可能解决这两大问题的技术而备受关注.其中,光催化剂是光催化技术的核心.开发具有宽光谱响应、高载流子分离效率的光催化剂既是研究热点也是难点.铋系光催化剂具有较强的可见光吸收能力.但是,提高铋系光催化剂对入射光的吸收效率、降低光生载流子复合效率仍是提高其光催化活性的关键.目前主要通过以下策略来解决这些问题:(1)贵金属负载,(2)半导体复合,(3)金属/非金属掺杂,(4)碳材料修饰,(5)铋金属负载等.最后还简要探讨了具有异质结的铋系光催化剂的发展趋势及其潜在应用.采用贵金属负载于铋系光催化剂(构建肖特基结),可以通过等离子体共振效应拓宽铋系光催化剂的光吸收范围,同时贵金属还能有效转移半导体上的光生电子,促进光生载流子的有效分离.但是,采用贵金属负载存在昂贵、容易发生团聚等不足.通过半导体之间构建紧密异质结,不仅可以调节所制备复合催化剂的能带结构,满足不同光催化反应的要求,而且由于内电场的存在可以促进光生载流子定向转移,从而提高光生载流子的分离效率.除此之外,通过杂原子掺杂可以在原子层面上构建异质结结构,也能有效抑制光生载流子的复合.近年来,通过与具有较好导电性能的碳材料复合,可以快速转移铋系半导体上产生的光子,提高光催化剂的活性和量子效率.铋纳米颗粒具有与贵金属类似的性能,通过采用铋金属对铋系半导体进行负载也可以发生等离子体共振效应,从而可以提高铋系半导体的活性.最后,作者展望了铋系半导体复合光催化剂发展的三个重要方向:(1)创制非化学计量比的铋系半导体复合光催化材料;(2)通过与还原能力更强的半导体构建复合光催化材料,实现光催化CO_2还原制备有机物和光催化全解水的应用中去;(3)充分利用铋系半导体化合物具有较强氧化能力的优点,将其应用于光催化有机物合成中,比如光催化甲苯类有机物选择性氧化等.  相似文献   

14.
ZnS-CdS/SiO_2复合效应对光吸收及光催化性能的影响   总被引:1,自引:1,他引:0  
用等体积浸渍法制备了一系列ZnS-CdS/SiO2复合半导体硫化物,采用XRD、TPR、UV-vis DRS和连续流动光催化反应对半导体材料的表面结构、能带结构、光吸收性能以及光催化反应性能进行了研究.结果表明:ZnS和CdS在载体表面发生复合作用,形成了CdxZn1-xS复合物,这种复合作用与焙烧温度以及ZnS/CdS比例有关,当煅烧温度为450℃且ZnS/CdS=1时,复合作用最强;ZnS和CdS间的复合效应对半导体材料的能带结构、吸光性能以及光催化性能产生了影响.复合作用越强其光催化CO2和CH4反应性能越高.  相似文献   

15.
采用两步法制备了MoS_2/Cu_2O催化剂,对其催化降解甲基橙(MO)性能进行了研究.首先,通过液相剥离和梯度离心获得少数层MoS_2纳米片,然后采用水热还原法在MoS_2纳米片上合成Cu_2O纳米颗粒,形成MoS_2/Cu_2O复合半导体,并分别通过扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、UV-Vis紫外可见漫反射光谱(DRS)等手段对催化剂的结构进行表征.在可见光下,MoS_2/Cu_2O复合半导体降解MO的效率明显高于纯MoS_2和Cu_2O.为了获得最佳光催化活性,探究了MoS_2质量分数(5%、10%、20%、30%、40%、50%)对MoS_2/Cu_2O复合半导体光催化降解MO的影响.最后,经过5次循环实验,MoS_2/Cu_2O降解率下降为82.5%,循环稳定性有待进一步提高.  相似文献   

16.
半导体光催化还原Cr(VI)为Cr(III)被认为是一种能够解决环境和能源问题的绿色技术.典型光催化剂ZnO和TiO2在还原重金属离子和二氧化碳,降解有机污染物,分解水等领域均已被证明是一种有潜力的光催化剂.但是,它们窄的太阳能吸收范围和快的光生载流子复合限制了其实际应用.因此,探索能够响应可见光的高效光催化剂是非常急切的课题.研究表明,引入窄带半导体构筑异质结复合光催化剂是一种提高ZnO和TiO2可见光催化活性的有效途径.随着二维石墨烯研究的热潮,具有类石墨烯结构的材料,如过渡金属硫化物MX2(M=Mo,W,Nb,Ta,Zr;X=S,Se)以其独特的“三明治夹心”层状结构受到了研究者的高度重视.在这些MX2材料中,MoS2是间接带隙半导体,能带为1.2 eV,并且随着层数的减小,能带增加到1.8 eV,因此,它对可见光具有很好的吸收能力.MoS2具有比表面积大、吸附能力强、反应活性高等优异的物理和化学性能,被广泛应用于光催化、制氢反应、太阳能电池及锂离子电池等领域.类似于MoS2,MoSe2也应该是一种具有潜力的窄带光催化剂.不幸的是,对于MoSe2在光催化还原Cr(VI)中的应用,还鲜有报道.本文基于ZnO,ZnSe和MoSe2构筑复合光催化剂,由于它们存在阶梯型的能级结构,使得此复合物能够展现优异的可见光催化性能,这是一种提高ZnO可见光催化活性的有效方法.扫描电子和高分辨透射电子显微镜结果显示,ZnO和ZnSe纳米颗粒分散在二维MoSe2片周围,形成很好的界面接触,有利于光生电子-空穴对的快速转移和分离,促进光催化反应的进行.紫外可见吸收光谱结果表明,MoSe2/ZnO/ZnSe(ZM)复合物在可见光区域展现了很好的吸收.电化学阻抗谱和光电流响应曲线结果表明,ZM复合物中光生载流子复合被有效抑制,延长了其寿命.光催化还原Cr(VI)的实验结果发现,与纯ZnO相比,ZM复合物展现了优异的光催化活性.在可见光照射180 min后,ZM复合物对Cr(VI)的还原率达到100%.优异的光催化活性归因于其优异的可见光吸收、阶梯型能级结构和光生载流子的有效转移.光催化重复性实验和X射线衍射图结果表明,在光催化反应之后ZM复合物的结构没有发生变化,具有良好的稳定性.本工作可为进一步设计具有理想功能的二维复合光催化剂提供有价值的信息.  相似文献   

17.
采用溶胶 -凝胶法制备了 Ti O2 / Si O2 和不同浓度 Fe3 掺杂的 Fe3 / Ti O2 / Si O2 复合纳米粉末 ,并利用XRD、BET、UV-vis等手段研究了 Ti O2 / Si O2 及掺铁形成的 Fe3 / Ti O2 / Si O2 复合微粒的表面结构形态变化 ,以及对污染物 NO- 2 光催化降解的影响 .结果表明 ,Fe3 / Ti O2 / Si O2 (ω( Fe3 ) =1 .5 % ,m( Ti)∶ m( Si) =2∶ 1 )具有最佳活性 ,样品呈晶化度较低的锐钛矿结构 .Fe3 掺杂导致晶粒的增大 ,稳定性降低 ,大大提高了半导体的光催化活性 ,有利于对低浓度 NO- 2 的光催化降解  相似文献   

18.
随着抗生素废水在水体和陆地生态系统的肆意排放,抗生素污染已成为当今世界重要的环境问题.由于抗生素废水具有生物毒性大、含有抑菌物质等特点,传统的物理吸附法、生物处理法在处理这类难降解有毒有机废水,尤其是含残留微量抗生素的废水时效果较差.为了解决抗生素废水所引起的环境危机,人们尝试了许多方法.近年来,光催化技术作为一种适用范围广、反应速率快、氧化能力强、无污染或少污染的处理抗生素废水的方法受到人们广泛关注.半导体材料在太阳光照射下,可产生具有较强氧化作用的羟基或超氧自由基,从而起到降解抗生素分子的作用.然而,传统的光催化处理抗生素废水光催化剂主要局限于TiO_2半导体,它存在太阳光谱吸收范围窄、光生电荷复合率高等问题,严重制约其工业化应用.因此,人们一直致力于开发高效、稳定的可见光响应型光催化剂.本文根据光催化技术的基本原理,综述了目前几种基于不同策略设计开发可见光光催化降解抗生素废水的新型光催化剂的方法.离子掺杂改性宽带隙半导体是开发高效可见光光催化剂的常用方法.通过过渡金属离子或非金属离子掺杂改性,可以使传统的TiO_2和SrTiO_3等紫外光催化剂吸收带边发生红移,响应可见光,从而显著提高可见光下光催化剂降解抗生素的效率.然而必须注意的是,掺杂的金属离子本身会成为电子-空穴复合点位,因此,过量的掺杂金属或非金属离子可能会降低其光催化活性.考虑到单一半导体材料在光催化反应中存在的光生载流子容易复合、可见光利用率低等问题,构建异质结构复合光催化体系,通过不同半导体之间的协同作用,促进光生电荷的分离与转移,是获得高效光催化体系的重要策略之一.典型的Ⅱ型异质结光催化剂,当不同的半导体紧密接触时,由于异质结两侧能带等性质的不同会形成空间电势差,从而有利于光生载流子的分离,光催化效率提高.作为一种复合光催化体系,表面等离子体共振增强型光催化体系近年来引起了国内外学者的广泛关注.Ag,Au和Pd金属纳米粒子在吸收光后其表面发生等离共振,随后等离子体发生衰减,把聚集的能量转移到半导体材料的导带.这个过程产生的高能电子(热电子),逃离贵金属纳米粒子而被与其接触的半导体收集,从而形成金属-半导体肖特基接触.形成的肖特基结可以显著提高光催化的光生电荷分离效率,从而提高光催化降解抗生素活性.目前,与传统物化法/生化法相比,光催化技术用于处理抗生素废水具有十分明显的技术优势,在水处理方面有着很好的应用前景.针对目前光催化体系存在的光生载流子容易复合的巨大挑战,今后,构筑高效复合光催化体系(例如石墨烯基二维复合光催化剂在光生电荷分离、太阳光利用率等方面已展现出较好的综合性能)将成为高效光催化降解抗生素催化剂研发的重要方向之一.  相似文献   

19.
钱进  薛瑶  敖燕辉  王沛芳  王超 《催化学报》2018,39(4):682-692
钙钛矿型NaNbO3由于其非线性光学、铁电、离子导电性、高声速、光催化性能和光折变等优良性能而备受关注. 在光催化反应中, 宽禁带宽度(≈ 3.24 eV)使NaNbO3具有较高的导带底(CBM)和较低的价带顶(VBM). 因此, 它表现出强烈的光氧化和光还原能力. 众所周知, 钙钛矿型光催化剂光电子激发和传输能力的增强归因于其较高的对称性. 因此, 具有高对称性的立方NaNbO3有利于电子激发和转移. 但是, 一些固有的缺点, 包括电荷分离效率低、量子产率差和光催化活性差等, 限制了其在光催化领域的实际应用. 为了解决这些问题, 一种有效的方法是与其他半导体结合, 形成具有改善光催化活性的异质结复合物. CeO2作为传统的催化剂在光催化领域得到了广泛研究. CeO2具有稳定、无毒的特点, 是一种n型半导体. 目前, 研究人员已经发现CeO2与不同半导体的耦合可以提高CeO2的光催化活性. 这归因于能级水平的适当匹配.本文通过简易水热法制备了高活性的CeO2/NaNbO3异质结复合物, 并采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM, HRTEM)和紫外-可见漫反射光谱(DRS)等表征技术研究了所制光催化剂的物相结构、样品形貌和光学性能. 所制样品的光催化活性通过光催化降解无色抗菌环丙沙星(CIP)和染料罗丹明B(RhB)证实. 结果表明,在紫外和可见光照射, CeO2/NaNbO3复合物比纯NaNbO3具有更高的光催化活性. 此外, CeO2/NaNbO3复合物中CeO2的最佳质量比为2.0 wt%. 紫外光照射下光催化性能的显著提高是由于CeO2/NaNbO3异质结的形成不仅提高了光生电荷在界面范围内的迁移速率, 而且降低了光激发产生的电子和空穴的复合率. 可见光照射下内置电场的存在促进了电子和空穴的分离, 提高了光催化性能. 此外, 利用光致发光(PL)光谱、光电流、电化学阻抗谱和捕获实验证明了样品的光催化反应机理.捕获实验结果表明, ·OH自由基、·O2-自由基和空穴都参与了RhB的光催化降解过程. 最后, 探讨了提高光催化活性的可能机理.  相似文献   

20.
纳米异质结光催化剂制氢研究进展   总被引:2,自引:0,他引:2  
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO2,具有可见光下光解纯水能力的In0.9Ni0.1TaO4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO3,CdS以及(AgIn)xZn2(1-x)S2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号