首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 389 毫秒
1.
近年来, 石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料, 由于具有较好的热稳定性和化学稳定性, 同时具有可调的带隙结构和优异的表面性质而备受人们关注. 然而, 传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷, 制约着其光催化活性的进一步提高. 因此, 人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率, 进而提高其可见光催化活性的重要手段. BiOI作为一种窄带隙的p型半导体光催化剂, 具有强的可见光吸收能力和较高的光催化活性, 同时它与g-C3N4纳米薄片具有能级匹配的带隙结构. 因此, 基于以上两种半导体材料的特性, 构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率, 而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场, 极大促进光生电子-空穴对的分离与迁移效率.为此, 本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料, 成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂. 利用X射线衍射仪(XRD), 场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试. XRD, SEM和TEM结果显示, 结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面; 紫外漫反射光谱表明, 纳米片复合材料的吸光性能较g-C3N4薄片有显著提升; 瞬态光电流测试证明, 复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中, BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性, 其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍; 自由基捕获实验发现, 反应过程中的主要活性物种为超氧自由基(·O2-), 即光生电子主导整个降解反应的发生. 由此可见, 强的可见光吸收能力和g-C3N4与BiOI界面处形成的内建电场协同促进了g-C3N4纳米薄片的电荷分离, 进而显著提高了该复合材料的可见光催化降解活性. 此外, 本文初步验证了在BiOI/g-C3N4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的, 而非"Z型转移"机制.  相似文献   

2.
任雨雨  李源  吴晓勇  王金龙  张高科 《催化学报》2021,42(1):69-77,后插1
近年来,随着工业化和城镇化的飞速发展,作为一种典型的空气污染物,NOx已经造成严重的环境问题,甚至威胁到人类的身体健康.为了解决这个问题,科研工作者研发了许多NOx去除技术,其中光催化技术被认为是一种能有效地去除空气中NOx的技术.作为一种廉价、无毒、热稳定性强、能带结构合适的光催化材料,石墨相氮化碳(g-C3N4)能够有效的利用可见光,将NO光催化氧化为NO3^-.但是由于自身的光生载流子复合率较高,光谱响应范围较窄等缺点,g-C3N4不能有效的光催化去除空气中持续流动的低浓度NO,限制了其在光催化领域中的实际应用.因此,有必要合成出高催化活性、高光响应范围的S型复合光催化剂来克服以上光催化材料的不足.为此,我们利用超声辅助法制备了一系列的S型Sb2WO6/g-C3N4复合光催化剂,呈现出优异的光催化活性:与其纯组分相比,所制备的15-Sb2WO6/g-C3N4复合光催化剂在可见光下照射30 min,可去除68%以上的持续流动的NO(初始浓度400 ppb),且五次循环实验后,Sb2WO6/g-C3N4复合光催化剂仍然具备良好的光催化活性和稳定性.透射电子显微镜结果清楚地表明,Sb2WO6颗粒已成功地均匀地负载到g-C3N4纳米片表面.紫外可见漫反射光谱的结果表明,Sb2WO6和g-C3N4的复合可以有效地提高对可见光的吸收能力.与纯g-C3N4样品相比,复合样的吸收带边具有明显的红移.光致发光光谱结果表明,在Sb2WO6/g-C3N4复合半导体中,光生载流子的复合受到抑制.光电流与电阻抗分析可知,与纯Sb2WO6和g-C3N4相比较,在15-Sb2WO6/g-C3N4复合光催化剂中的光生载流子的迁移速率和分离效率较高.通过对样品的能带结构分析并已有参考文献,我们认为Sb2WO6和g-C3N4的接触边界形成了S型异质结,使光生载流子的转移速率更快,改善了光生电子-空穴对分离,而且增强可见光的利用效率,从而提高了光催化性能.自由基捕获实验结果证实,?O2^-主导了Sb2WO6/g-C3N4复合光催化剂去除NO反应,h^+也在一定程度上参与了光催化氧化NO的反应.通过原位红外光谱技术研究了Sb2WO6/g-C3N4光催化NO氧化的反应机理,研究发现,Sb2WO6/g-C3N4复合光催化剂光催化去除是氧诱导的反应.具体反应机理是在可见光的驱动下,光催化剂表面的光生电子会与被吸附的O2反应生成?O2^-,并与光生h^+一起,共同将低浓度的NO光催化氧化为亚硝酸盐或硝酸盐.该研究有助于深入研究光催化氧化NO机理,并为设计高效光催化剂用于光催化氧化ppb级NO提供了一种极具前景的策略.  相似文献   

3.
刘超  封越  韩字童  孙耀  王晓秋  张勤芳  邹志刚 《催化学报》2021,42(1):164-174,后插28-后插31
随着人口增长和全球工业化进程加快,人们饱受环境污染和能源短缺问题的困扰.半导体光催化技术作为一种高效、可持续、环境友好、有潜力的新技术,在环境净化和能源开发方面有着广阔的应用前景.到目前为止,人们已开发出多种半导体光催化剂,并广泛应用于污染物降解、氢气制备和二氧化碳还原等领域.其中,化合物K4Nb6O17具有典型的层状结构、合适的电子能带结构、结构易改性以及良好的电荷传输性能等特点,在光催化领域得到了广泛研究.然而,单纯K4Nb6O17仍存在光响应范围窄、光生载流子复合率高等问题,限制了K4Nb6O17的进一步应用.因此,需要对K4Nb6O17进行改性,拓宽其光吸收范围,提高其光生载流子分离效率,从而提高其光催化活性.本研究通过简单焙烧法制备Z型N-掺杂K4Nb6O17/g-C3N4(KCN)异质结光催化剂,其中石墨相氮化碳(g-C3N4)在复合材料中质量比约为50%.层状K4Nb6O17层板的电子结构通过N掺杂进行调控,拓宽其光响应范围,使其具有可见光响应;同时,形成的g-C3N4位于N-掺杂K4Nb6O17的外层以及内层空间,在这两种组分之间形成异质结,有利于提高光生载流子的分离效率.荧光光谱、时间分辨荧光光谱和光电化学测试表明,N掺杂和异质结的形成有利于增强光生电子-空穴对的传输和分离效率.通过在可见光照射下降解罗丹明B(RhB)和产氢来评估材料的光催化性能.相比g-C3N4(8.24μmol/h)和Me-K4Nb6O17(~1.30μmol/h),KCN复合材料光催化产氢效率(~16.91μmol/h)得到了极大提高,并显示出极好的光催化产氢稳定性能.对于光催化降解RhB体系,KCN复合材料也显示出较好的光催化活性和稳定性,并能很好地将RhB矿化.鉴于KCN复合材料具有较小的比表面积(9.9 m^2/g)且无孔结构,认为比表面积对光催化活性影响较小.因此,与单组分相比,KCN复合材料光催化产氢和RhB降解活性都得到了极大提高,活性的增强主要归功于N掺杂和异质结形成的协同效应,其中N掺杂可以拓宽光捕获能力,异质结形成可提高电荷载流子的分离效率.电子自旋共振(ESR)谱表明,在KCN降解RhB体系中,超氧自由基(·O2^?)、羟基自由基(·OH)和空穴(h^+)作为主要活性物质都参与了反应.结合实验结果可以推测KCN复合材料满足了Z型光催化体系,该体系具有高效的光生载流子分离效率和较高的氧化还原能力.  相似文献   

4.
石墨型氮化碳(g-C3N4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C3N4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C3N4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C3N4异质结复合体是常用的有效改善g-C3N4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO2/Fe2O3,ZnO/BiVO4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO2和g-C3N4的紧密连接,以促进光生电子由g-C3N4向TiO2的迁移、改善光生载流子的分离,进而更加显著地提高g-C3N4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO2/g-C3N4纳米复合体,并研究了P–O功能桥对TiO2/g-C3N4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C3N4与适量的纳米TiO2复合,尤其是g-C3N4与适量P–O桥连TiO2的复合可进一步提高g-C3N4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C3N4的光生电子由g-C3N4向TiO2转移,极大地促进了g-C3N4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C3N4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

5.
作为温室效应的主要气体CO2浓度持续上升,已经成为全球环境问题.将CO2光催化还原成可再生能源不仅可以解决CO2带来的温室效应,而且可以将太阳能转化为燃料物质而取代传统意义上的化石能源.实际上光催化的研究可以追溯到1979年,自从Inoue首次报道了光催化CO2和水制取甲酸、甲烷等有机物,人们一直在努力开发高效的CO2转化光催化剂.近年来,随着光催化技术的快速稳定发展,各种半导体光催化剂,如Zn2Ge O4,CdS,Fe3O4,g-C3N4和SrTiO3等,已被开发用于光催化还原二氧化碳.在这些半导体中,有的材料具有较大的带隙导致较低的可见光活性,有的材料具有毒性引起额外的环境问题.因此,寻求具有适度带隙且环境友好的半导体材料是解决全球变暖问题的关键.近年来,g-C3N4因其带隙(约2.7e V)较窄,具有一定的可见光吸收性能,无污染,以及化学和热稳定性良好等特点,被视为理想的可见光响应光催化材料之一.但是,g-C3N4光吸收有限、光生电子空穴复合率较高等缺点严重限制了其光催化活性.为了进一步提高g-C3N4的CO2可见光催化还原活性,国内外研究者开发了许多方法来提高电荷分离效率,进而提高g-C3N4光催化剂的总体活性.在这些策略中,将g-C3N4与具有合适导带位置的其他材料偶联以促进电子空穴分离是提高光催化性能的有效方法之一.由于Co-MOF具有较窄的带隙且导带位置与g-C3N4匹配,我们选择Co-MOF与g-C3N4复合来克服g-C3N4的缺点,进而达到提高其光催化活性的目的.作为电子供体的Co-MOF能够将最低未占分子轨道(LUMO)上的光生电子转移到g-C3N4的导带以促进电荷分离,同时水被g-C3N4价带上的空穴氧化,最终生成氧气,从而提高光催化还原CO2的性能.制备的Co-MOF/g-C3N4纳米复合材料在可见光照射下具有优异的光催化还原CO2性能,约为纯g-C3N4的光催化活性的2倍.一系列分析表明,Co-MOF的引入不仅拓宽了可见光的吸收范围,而且促进了电荷分离,有利于提高g-C3N4的光催化活性.特别是在590nm单波长照射下进行的羟基自由基实验进一步证明了Co-MOF的LUMO上的光生电子可以转移到g-C3N4.该研究结果为基于g-C3N4的光催化体系的合理构建提供了新思路.  相似文献   

6.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

7.
魏婧宇  刘利  卢金荣 《分子催化》2023,37(5):439-451
半导体光催化制氢是一种可实现持续制备和储存氢气的绿色技术.石墨相氮化碳(g-C3N4)是研究广泛的光催化剂,但其仍存在光利用率低、光生电子和空穴易复合等问题,制约着光催化产氢的性能.利用给电子卟啉修饰g-C3N4,构建了四(4-羧基)苯基卟啉(TCPP)以共价/非共价方式修饰g-C3N4的催化剂.卟啉共价修饰g-C3N4(gC3N4-TCPP0.1)及非共价复合结构(TCPP0.1/g-C3N4)光催化产氢速率分别为6 997和5 399μmol·g-1·h-1,较g-C3N4分别提高了53%和18%. TCPPx/g-C3N4异质结加强了界面接触,促进了电荷转移,增强了可见光吸收能力,进而提高了光催化制氢性能. g-C3N4-TCPPx中, TCPP的接枝拓展了共轭结构,优化了电子结构,增大了分子偶极,促进了电荷分离,共价桥键为电荷传输提供了通道.  相似文献   

8.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   

9.
报道了一种新型Ag/Ag3PO4/g-C3N4三元复合光催化剂的制备及其半导体界面处的快速载流子分离所引起的光催化活性的显著增强效应.通过X射线衍射,扫描电子显微镜,紫外-可见吸收光谱以及光致发光光谱等就其晶体结构、形貌、组分、光学吸收以及载流子的快速分离行为进行了表征与分析.以罗丹明B作为模型化合物分子,研究发现,所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂在可见光照射下表现出比Ag3PO4以及Ag3PO4/g-C3N4二元催化剂更为优异的光催化活性.研究认为,Ag3PO4表面尺寸约为40 nm的Ag纳米粒子在可见光下受激所产生的等离子表面共振效应以及Ag3PO4与g-C3N4界面处所形成的类似异质结结构对所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂光催化活性的显著增强起到重要作用.  相似文献   

10.
二氧化钛,氧化锌,磷酸铋等传统的紫外光响应光催化剂虽然具有良好的光催化性能,但是对太阳能利用率很低(紫外光只占太阳光能量的4%左右).近年来,类石墨相氮化碳(g-C3N4)受到了广泛的关注.g-C3N4的带隙约2.7 eV,它只能吸收460nm以下的光,对太阳能的利用率依然比较低.构筑异质结是一种有效的提高光催化活性的方法.BiOCl/g-C3N4,TiO2/g-C3N4, Bi2MoO6/g-C3N4, Al2O3/g-C3N4, Ag3PO4/g-C3N4等异质结光催化剂曾被广泛的报道.硫化铋是属于正交晶系的窄带隙半导体,它的带隙约1.3–1.7 e V.由于其独特的电子结构和光学特性,硫化铋在光催化,光检测器和医药成像等领域有着广泛的应用.另外,硫化铋还具有优异的光热转换性能,在光热癌症治疗领域有显著的效果.微波辅助法,水热法,惰性气体下高温煅烧法等都曾被用来合成g-C3N4/Bi2S3异质结光催化剂.不同的文献也提出了不同的催化机理.如何使用更简单环保的方法来合成g-C3N4/Bi2S3异质结光催化剂?电子和空穴的转移路径是怎样的?本文利用简单的低温方法合成了硫化铋,利用超声法得到了g-C3N4/Bi2S3异质结光催化剂,分析了其微观形貌,结构,并探讨了光催化的反应机理和提高光催化性能的因素.X射线衍射,傅里叶变换红外光谱, X射线光电子能谱和透射电子显微镜的结果表明,硫化铋纳米颗粒被成功地引入到g-C3N4中.使用亚甲基蓝为分子探针研究了所制材料在模拟太阳光下的光催化活性.结果发现, CN-BiS-2表现出最佳的光催化活性,是g-C3N4的2.05倍,是Bi2S3的4.42倍.利用液相色谱二级质谱联用分析了亚甲基蓝的降解路径.硫化铋的引入拓展了复合材料的吸收边,使其向可见光区红移,且在整个可见光区的光吸收能力都有明显的增强.光电流的增强和交流阻抗谱圆弧半径的减小,表明光生载流子的迁移与分离速率得到了增强.自由基捕获试验表明,最主要的活性物种是光生空穴,次之是羟基自由基和超氧自由基.在CN-Bi S-2样品中羟基自由基和超氧自由基的电子顺磁共振信号都比g-C3N4有明显的增强,表明复合样品中能够产生更多的羟基自由基和超氧自由基.基于光电流,交流阻抗,荧光光谱,自由基捕获和电子顺磁共振的结果,我们提出了高能电子由硫化铋转移到g-C3N4,同时空穴由g-C3N4转移到硫化铋的电子空穴转移机制.此外,红外热成像的结果表明, g-C3N4/Bi2S3异质结材料具有更强的光热转换能力,从而有利于加速光生载流子分离.  相似文献   

11.
Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the g-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the g-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of g-C3N4 was significantly improved after treatment toward degradation of 4- nitrophenol under visible light irradiation. The degradation rate constant of the small particle g-C3N4 is 5.7 times of that of bulk g-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.  相似文献   

12.
采用一种原位合成工艺制备了具有类石榴结构的金属铋(Bi)单质修饰的g-C3N4复合材料(Bi-CN),并用于可见光氧化NO反应中.金属Bi单质镶嵌在CN层间形成的复合物,由于金属Bi单质显著的表面等离子体共振(SPR)作用可将光吸收范围由紫外光延展至近红外,极大地提高了复合物的光吸收.此外,由于Bi单质存在于复合物界面可产生内建莫特-肖特基效应,从而加快光生载流子的分离与转移.由此,Bi-CN复合物光催化剂展现出超强的光催化去除NO性能.我们提出了类石榴结构的形成以及相应的Bi-CN复合物光催化活性的提高机理.这不仅为高效的金属铋单质改性的g-C3N4基光催化剂提供了一种新的设计方案,也对g-C3N4基光催化的机制理解提出了新的见解.通过X射线衍射、红外光谱和X射线光电子能谱结果发现Bi是以金属单质的形式存在于Bi-CN复合物中,这得益于我们采用了二水合铋酸钠(NaBiO3·2H2O)作为铋前驱体,从而成功避免了氧化态铋的形成.Bi-CN复合物中金属铋单质的存在有诸多优点.首先,金属铋单质具有显著的表面SPR效应,它的引入可大大提高复合物的光吸收能力和太阳光利用率.有研究表明,直径为150–200 nm的铋球能够在紫外-可见漫反射图谱(UV-vis)在λ=500 nm处呈现出典型的SPR峰,但本样品在λ=200–800 nm区间内并未发现该SPR峰.由于铋单质的共振受限于其尺寸大小、颗粒形状和构造环境.本文中球形铋单质的直径约为1μm,其可能发生共振效应的峰位置应超过800 nm,因此未发现相应的SPR峰.其次,金属铋单质分散在CN层表面上构建的肖特基垫垒能够高效地阻止光生电子与空穴的复合,促进了光生载流子的分离与转移,从而提高光氧化NO进程.再者,金属铋单质的介入成功构造了Bi-CN异质结,在可见光照射下NO氧化反应中,Bi-CN复合物活性显著高于CN(22.2%)、CN-EG(36.4%)和Bi(14.1%),其中以10%Bi-CN活性最佳,NO去除率到70.4%,远远超过K插层的g-C3N4、Ag掺杂的g-C3N4和氧化石墨烯修饰的g-C3N4.当复合物中金属铋单质含量超过10%时,其活性明显下降.这是因为大量的金属铋单质积聚在Bi-CN复合物表面上而造成物理堵塞,妨碍了CN吸收可见光,从而降低了其可见光吸收能力;同时导致只会吸收更多的紫外光(λ<280 nm)而不是可见光,因而其可见光催化氧化NO能力下降.  相似文献   

13.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C3N4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C3N4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C3N4光催化效率.在过去几年中,TiO2,Bi2WO6,WO3,Bi2MoO6,Ag3PO4和ZnO已经被成功证实可以与g-C3N4耦合而构造Z型光催化剂体系.其中,WO3/g-C3N4光催化剂体系,具有可见光活性的WO3导带中的光生电子和g-C3N4价带中的光生空穴容易实现Z型复合,从而保留了WO3的强氧化能力和g-C3N4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C3N4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)2,WS2和MoS2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)x助催化剂修饰g-C3N4/WO3耦合形成的Z型体系,开发出廉价高效的WO3/g-C3N4/Ni(OH)x三元产氢光催化体系.在该三元体系中,Ni(OH)x和WO3分别用于促进g-C3N4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C3N4的光生电子在Ni(OH)x富集并应用于光催化产氢,而高能的WO3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO3纳米棒/g-C3N4,并采用原位光沉积方法将Ni(OH)x纳米颗粒负载到WO3/g-C3N4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO3为有缺陷的正交晶系的晶体,直径为20–40纳米棒且均匀嵌入在g-C3N4纳米片上;Ni(OH)x为Ni(OH)2与Ni的混合物,其Ni(OH)2与Ni的摩尔比为97.4 : 2.6,Ni(OH)x粒径为20–50 nm且均匀分散在g-C3N4纳米片上,WO3/g-C3N4/Ni(OH)x催化剂界面之间结合牢固,其中WO3和Ni(OH)x均匀分布在g-C3N4上.紫外-可见漫反射表征结果表明,随着缺陷WO3的负载量增加,复合体系的吸收边与g-C3N4相比产生明显的红移,而加入Ni(OH)x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO3和Ni(OH)x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO3和Ni(OH)x能降低g-C3N4的析氢过电位,从而提高光催化剂表面的产氢动力学.?O2?和?OH 电子自旋共振谱表明成功形成了WO3/g-C3N4 耦合Z 型体系.光催化分解水产氢的性能测试表明,20%WO3/g-C3N4/4.8%Ni(OH)x产氢效率最高(576 μmol/(g?h)),分别是g-C3N4/4.8%Ni(OH)x,20%WO3/g-C3N4和纯g-C3N4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)x助催化剂修饰和g-C3N4/WO3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

14.
作为一种新型水中有机污染物,有机氟化物中C–F共价键的键能较大,因而很难通过传统的可见光光催化剂降解.因此,开发高效可见光光催化剂是实现在可见光照射下成功降解水中有机氟化物的关键.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C3N4)因具有可见光响应、环境友好及低成本等优点而广泛应用于水中有机污染物去除.然而,体相层状结构严重限制了g-C3N4的可见光活性.这是由于体相层状结构不利于光生电子的表面迁移,同时增加了光催化反应过程的传质阻力.为了开发一种可重复使用且具有优异可见光活性的光催化剂,进而实现在可见光照射下水中有机氟化物的高效降解及矿化,本文以氯铂酸和多孔氮化碳(pg-C3N4)为前驱体,运用简单的原位光还原法成功制备出一系列高分散铂沉积多孔氮化碳复合材料(Pt/pg-C3N4),而pg-C3N4则是以三聚氰胺为原料采用前驱体预处理法制备.与传统铂沉积石墨相氮化碳(Pt/g-C3N4)复合材料相比,由于多孔氮化碳前驱体具有暴露的几何内外表面,铂纳米粒子可高度分散于其上.因此,铂纳米粒子的电子捕获效应显著增强.另外,与其他传统还原法相比,原位光还原技术还可有效抑制铂纳米粒子的自凝聚.我们对制备的Pt/pg-C3N4复合材料的形貌、孔隙率、相结构、化学组成及光电性质进行了详细表征.结果显示,与传统Pt/g-C3N4复合材料相比,由于多孔微观结构的构建以及高度分散铂纳米粒子的沉积,制备的Pt/pg-C3N4复合材料的BET比表面积显著增大,光吸收能力明显增强,光催化量子效率显著提高.在可见光条件下,初步评价了该复合材料光催化降解水中偶氮染料甲基橙的活性,然后将其进一步应用于水中4-氟苯酚的降解及矿化.结果表明,由于多孔微观结构的构建以及高度分散铂纳米粒子的沉积,所制备Pt/pg-C3N4复合材料具有相当高的可见光光催化活性.结果还显示,所制复合材料具有很高的稳定性,连续使用4次均保持相似的活性.作为一种可见光催化剂,所制Pt/pg-C3N4复合材料有望广泛应用于水中持久性有机污染物的降解以及光催化劈裂水产氢、NO分解和CO2还原等领域.  相似文献   

15.
半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58 eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者多考虑采取构造异质结的方式.石墨相氮化碳(g-C3N4)能带位置合适,与多种光催化半导体能带匹配,是构造异质结的常用选择.因此,本文选用g-C3N4与钼酸铋复合,构造异质结结构.为了进一步提高光催化性能,多采用负载贵金属(Pt,Au和Pd)作为助催化剂,利用贵金属特有的等离子共振效应,增加光吸收,促进载流子分离,但贵金属价格昂贵.Bi金属单质价格便宜,具备等效的等离子共振效应,是理想的贵金属替代物.钼酸铋可以采取原位还原的方式还原出Bi单质,构造更紧密的界面结构,更有利于载流子传输.Bi的等离子共振效应可以有效提高材料的光吸收能力和光生载流子分离率.本文采用溶剂热和原位还原方法成功合成了一种新型三元异质结结构g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)空心微球.结果显示,三元异质结结构的最佳配比为0.4CN/BMO/9Bi,该样品表现出最好的光催化降解罗丹明B效率,是纯钼酸铋的9倍.通过计算DRS和XPS的价带数据,0.4CN/BMO/9Bi是一种Z字型异质结.牺牲试剂实验也提供了Z字型异质结的有力证据,测试显示超氧自由基·O^2-(在-0.33 eV)是光催化降解的主要基团.但是,钼酸铋的导带位置低于-0.33 eV,g-C3N4的导带高于-0.33 eV,因此g-C3N4的导带是唯一的反应位点,从而证明了光生载流子的转移是通过Z字型异质结结构实现的.TEM图显示金属Bi分散在钼酸铋表面.DRS和PL图分析表明金属Bi增加了材料的光吸收能力,同时扮演了中间介质的角色,促进钼酸铋导带的电子和g-C3N4价带的空穴快速复合.因此,g-C3N4/Bi2MoO6/Bi的优异光催化性能主要归功于Z字型异质结和Bi金属的等离子共振吸收效应,提高了材料的光吸收能力和光生载流子分离率.  相似文献   

16.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号