首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
SiC films were prepared by pulsed XeCl laser ablation of ceramic SiC target on Si(100) substrate at temperature 850℃ and post-deposition high temperature annealing above 1100℃ (1100℃-7 Pa). The surface morphology, crystal structure, composition and chemical state of the element in the films before and after annealing were studied by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Auger electron Spectrum, X-ray photoelectron spectrum and photoluminescence methods. It was found that the films were consisted of polycrystal 4H-SiC structure before annealing and were turned into singlecrystal epitaxial 4H-SiC after annealing. The surfaces of the films were smooth and the adhesion of films with the substrate was good. The films were transparent. Excited by the laser with wavelength 290 nm at room temperature, the films emitted two luminescence bands with the peaks at 377 nm and 560 nm. The emission at 377 nm was attributed to the combination of the transmission among the valence and conductor bands, while the one at 560 nm was possibly to be from exciton emission.  相似文献   

2.
Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates (300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite p  相似文献   

3.
The influences of thermal annealing on the structural and optical features of radio frequency(rf) magnetron sputtered self-assembled Ge quantum dots(QDs) on Si(100) are investigated.Preferentially oriented structures of Ge along the(220) and(111) directions together with peak shift and reduced strain(4.9%to 2.7%) due to post-annealing at 650 ℃ are discerned from x-ray differaction(XRD) measurement.Atomic force microscopy(AFM) images for both pre-annealed and post-annealed(650 ℃) samples reveal pyramidal-shaped QDs(density ~ 0.26×10~(11) cm~(-2)) and dome-shape morphologies with relatively high density ~ 0.92×10~(11) cm~(-2),respectively.This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity.The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role.The observed red-shift ~ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing,and is related to the effect of quantum confinement.Furthermore,the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO_2 or GeO_x and holes in the ground state of Ge dots.Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart.An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes.A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established.Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated.  相似文献   

4.
Ag-doped Ge2Sb2Te5 films were deposited by rf magnetron sputtering on SiO2/Si substrates. The content of Ag ranging from 4.5 to 11.3 at.% is determined by inductively coupled plasma atomic emission spectrometry. The crystallization temperature of Ag-doped Ge2Sb2 Te5 increases with the increasing Ag content and the stability of phase change film is improved greatly. Structures were measured by x-ray diffraction and the face-centered-cubic structure was more stable after Ag doping. Four-point probe was used to measure the sheet resistance of Agdoped Ge2Sb2 Te5 films annealed at different temperatures and it is indicated that Ag atoms increase the sheet resistance of Ge2Sb2 Te5 thin film when the annealing temperature is higher than about 360℃, which is beneficial for reducing the reset current. Current-voltage curves were tested and it is demonstrated that 4.5 at. % Ag doping into the Ge2Sb2Te5 film can reduce the threshold current from 1.46mA to 0.25mA and can only increase the threshold voltage slightly, which is very useful for low energy consumption.  相似文献   

5.
NbTiN thin films are good candidates for applications including single-photon detector, kinetic inductance detector, hot electron bolometer, and superconducting quantum computing circuits because of their favorable characteristics,such as good superconducting properties and easy fabrication.In this work, we systematically investigated the growth of high-quality NbTiN films with different thicknesses on Si substrates by reactive DC-magnetron sputtering method.After optimizing the growth conditions, such as the gas pressure, Ar/N_2 mixture ratio, and sputtering power, we obtained films with excellent superconducting properties.A high superconducting transition temperature of 15.5 K with narrow transition width of 0.03 K was obtained in a film of 300 nm thickness with surface roughness of less than 0.2 nm.In an ultra-thin film of 5 nm thick, we still obtained a transition temperature of 7.6 K.In addition, rapid thermal annealing(RTA) in atmosphere of nitrogen or nitrogen and hydrogen mixture was studied to improve the film quality.The results showed that Tc and crystal size of the NbTiN films were remarkably increased by RTA.For ultrathin films, the annealing in N_2/H_2 mixture had better effect than that in pure N2.The T_c of 10 nm films improved from 9.6 K to 10.3 K after RTA in N_2/H_2 mixture at 450℃.  相似文献   

6.
The influence of oxygen partial pressure on the optical properties of NiOx thin films deposited by reactive DC-magnetron sputtering from a nickel metal target in a mixture gas of oxygen and argon was presented. With the oxygen ratio increasing, the reflectivity of the as-deposited films decreased, and optical band gap increased. Thermogravimetric analysis (TGA) showed that the decompose temperature of the films was above 250℃. After annealed at 400℃, only films deposited at 5% O2/Ar ratio showed high optical contrast which was about 52%. Scanning electron microscope (SEM) results revealed that the changes of surface morphology were responsible for the optical property variations of the films after annealing. Its thermal stability and high optical contrast before and after annealing made it a good potential write-once optical recording medium.  相似文献   

7.
High-quality GaAs films with fine surfaces and GaAs/Ge interfaces on Ge have been achieved via molecular beam epitaxy. The influence of low temperature annealing and low temperature epitaxy on the quality of the film when GaAs is grown on a (100) 6 ° offcut towards [111] Ge substrate are investigated by analyzing and comparing the GaAs films that are fabricated via three different processes. A low temperature annealing process after high temperature annealing and a low temperature epitaxy process after the initial GaAs growth play a vital role in improving the quality of GaAs film on a Ge substrate.  相似文献   

8.
Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.  相似文献   

9.
Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal–insulator transition properties of the vanadium dioxide thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from(1ˉ11) to(011) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal–insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal–insulator transition.  相似文献   

10.
We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing. Investigation of the coarsening and relaxation of the dots shows that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer, while the SiGe dots on Si0.77Ge0.23 film relax by lattice distortion to coherent dots, which results from the obvious interface between the SiGe dots and the Si0.77Ge0.23 film. The results are suggested and sustained by Vanderbilt and Wickham's theory, and also demonstrate that no bulk diffusion occurs during the excimer laser annealing.  相似文献   

11.
Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films.In this paper,Co films with different thickness of Co Si2buffer layers were grown on Si(001)substrates.In order to investigate morphology,structure,and magnetic properties of films,scanning tunneling microscope(STM),low energy electron diffraction(LEED),high resolution transmission electron microscopy(HRTEM),and surface magneto-optical Kerr effect(SMOKE)were used.The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of Co Si2buffer layers.Few Co Si2monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality.Furthermore,the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process,which is the typical phenomenon in cubic(001)films.  相似文献   

12.
Different In/Ge(001) nanostructures have been obtained by annealing the samples at 320℃ with different coverages of In. Annealing a sample with a critical coverage of 2.1 monolayer of In, different In/Ge(001) nanostructures can be obtained at different temperatures. It is found that thermal annealing treatments first make In atoms form elongated Ge{103}-faceted In-clusters, which will grow wider and longer with increasing temperature, and finally cover the surface completely.  相似文献   

13.
We investigate the oxidation behaviour of Si1-xGex alloys(x=0.05,0.15,and 0.25),The oxidation of SiGe films with different compositions was carried out in O2(dry)atmosphere at 800,900 and 1000℃,respectively,for various lengths of time,The thickness and property of the nanoparticle and nanolayer in oxide films and germanium segregation in oxidation of SiGe alloys are measured by using a high precision ellipsometer.The results are in good agreement with the Rutherford backscattering spectrometry,profile dektak instrument and high-resolution scanning transmission electron microscopy.We found that the Ge content in the oxide layer increases with the Ge content in SiGe alloys,and that the Ge content in the oxide film decreases with the increasing oxidation temperature and time,Rejection of Ge results in Piling up of Ge at the interface etween the growing SiO2 and the remaining SiGe,which forms a nanometre Ge-rich layer.Substantial interdiffusion of Si and Ge takes place in the remaining SiGe,which leads to the complicated distribution of Ge segregation.We find a nanometre cap layer over the oxide film after fast oxidation,in which there are many Ge nanoparticles,We analyse the kinetics and mechanism of the nanostructure of the oxide and Ge segregation in oxidation of Si1-xGex alloys.  相似文献   

14.
FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition of ZnO and a successive rapid thermal annealing (RTA) process. The optimum condition to prepare high-ordering L10 FePtZnO films is 20 vol% ZnO addition and 450 ℃ annealing. The effect of the ZnO additive on the ordering process of the L10 FePtZnO films is discussed. In the annealing process, Zn atoms move to the film surface and evaporate. The motion of the Zn atoms accelerates the intergrain exchange and decreases the ordering temperature.  相似文献   

15.
Ge+ ions are implanted into fused silica glass at room temperature and a fluence of 1×10 17 cm-2 . The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge0 , GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600℃ leads each composite to change its content. After annealing at 1000℃, there remains some amount of Ge 0 in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2 , Si–N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si–N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO 2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photoluminescence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700℃, and their photoluminescences recover to the values of as-grown samples after annealing at 700℃. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.  相似文献   

16.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

17.
Fe~(2+):ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum(about 1 × 10~(-4) Pa) at different temperatures. The influences of thermal annealing on the structural and optical properties of these films such as grain size and optical transmittance are investigated. The x-ray diffraction patterns show that the Fe~(2+):ZnSe thin film is preferred to be oriented along the(111) plane at different annealing temperatures.After the film is annealed, the full-width-at-half-maximum( FWHM) of the x-ray diffraction peak profile(111) of the film decreases and its crystal quality is improved. Scanning electron microscope images show that the films are more dense after being annealed. Finally, the sample is used as a saturable absorber in ZBLAN fiber laser. The annealed Fe~(2+):ZnSe thin films can be used to realize stable Q-switching modulation on ZBLAN fiber laser. The results demonstrate that the Fe~(2+):ZnSe thin film is a promising material for generating the high-power pulses of mid-infrared Q-switched fiber lasers.  相似文献   

18.
Structural and optical properties of ~ 20 nm Ge nanoislands grown on Si(100) by radio frequency (rf) magnetron sputtering under varying annealing conditions are reported. Rapid thermal annealing at a temperature of 600℃ for 30 s, 90 s, and 120 s are performed to examine the influence of annealing time on the surface morphology and photoluminescence properties. X-ray diffraction spectra reveal prominent Ge and GeO 2 peaks highly sensitive to the annealing time. Atomic force microscope micrographs of the as-grown sample show pyramidal nanoislands with relatively high-density (~ 10 11 cm-2 ). The nanoislands become dome-shaped upon annealing through a coarsening process mediated by Oswald ripening. The room temperature photoluminescence peaks for both as-grown (~ 3.29 eV) and annealed (~ 3.19 eV) samples consist of high intensity and broad emission, attributed to the effect of quantum confinement. The red shift (~ 0.10 eV) of the emission peak is attributed to the change in the size of the Ge nanoislands caused by annealing. Our easy fabrication method may contribute to the development of Ge nanostructure-based optoelectronics.  相似文献   

19.
The early stages of hydrogenated nanocrystalline silicon (nc-Si:H) films deposited by plasma-enhanced chemical vapour deposition were characterized by atomic force microscopy. To increase the density of nanocrystals in the nc-Si:H films, the films were annealed by rapid thermal annealing (RTA) at different temperatures and then analysed by Raman spectroscopy. It was found that the recrystallization process of the film was optimal at around 1000℃. The effects of different RTA conditions on charge storage were characterized by capacitance--voltage measurement. Experimental results show that nc-Si:H films obtained by RTA have good charge storage characteristics for nonvolatile memory.  相似文献   

20.
Ultrathin InSb films on SiO2/Si substrates are prepared by radio frequency(RF) magnetron sputtering and rapid thermal annealing(RTA) at 300,400,and 500℃,respectively.X-ray diffraction(XRD) indicates that InSb film treated by RTA at 500℃,which is higher than its melting temperature(about 485℃),shows a monocrystalline-like feature.A high-resolution transmission electron microscopy(HRTEM) micrograph shows that melt recrystallization of InSb film on SiO2/Si(111) substrate is along the(111) planes.The transmittances of InSb films decrease and the optical band gaps redshift from 0.24 eV to 0.19 eV with annealing temperature increasing from 300℃ to 500℃,which is indicated by Fourier transform infrared spectroscopy(FTIR) measurement.The observed changes demonstrate that RTA is a viable technique for improving characteristics of InSb films,especially the melt-recrystallized film treated by RTA at 500℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号