首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Al/p-Si and Al/Bi4Ti3O12/p-Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivity (σac) are obtained each as a function of temperature using admit- tance spectroscopy method which includes capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. In addition, the effect of interfacial Bi4Ti3012 (BTO) layer on the performance of the structure is investigated. The voltage- dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal-semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (△φb), and barrier height (φb), are extracted using reverse bias C 2-V characteristics as a function of temperature.  相似文献   

2.
《中国物理 B》2014,(1):519-524
The perylene (C20H12) layer effect on the electrical and dielectric properties of Al/p-Si (MS) and Al/perylene/p-Si (MPS) diodes have been investigated and compared in the frequency range of 0.7 kHz-2 MHz. Experimental results show that C-V characteristics give an anomalous peak for two structures at low frequencies due to interface states (Nss) and series resistance (Rs). The increases in C and G/o3 at low frequencies confirm that the charges at interface can easily follow an ac signal and yield excess capacitance and conductance. The frequency-dependent dielectric constant (er) and dielectric loss (e') are subtracted using C and G/co data at 1.5 V. The eI and e" values are found to be strongly dependent on frequency and voltage, and their large values at low frequencies can be attributed to the excess polarization coming from charges at traps. Plots of ln(o'ac)-ln(w) for two structures have two linear regions, with slopes of 0.369 and 1.166 for MS, and of 0.077 and 1.061 for MPS, respectively. From the C 2-V characteristics, the doping acceptor atom concentration (NA) and barrier height (,~) for Schottky barrier diodes (SBDs) 1.303 ~ 1015 cm-3, and 1.10 and I. 13 eV, respectively. of MS and MPS types are also obtained to be 1.484 ~ 1015 and  相似文献   

3.
This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.  相似文献   

4.
General representations for symmetrical and asymmetrical intermediate sp-hybridization are provided, with which the development of electronic structure in C3v-symmetrical C2H6 and the bonding configuration in C60 have been analyzed as an example. The spherical structure of C60 does not necessarily require the fourth hybrid, h4, to lie along the radial direction. Rather, h4 runs at an angle of 3.83° from the radius, in the plane bisecting a pentagon, to achieve maximum overlap with adjacent h4-hybrids. By virtue of these representations, a number of properties of covalent molecules and solids can be conveniently calculated. This work might be particularly helpful for the study of C-C bonding in curved structures of carbon, such as fullerenes, carbon nanotubes, and buckled graphene.  相似文献   

5.
We have measured the synchrotron radiation photoelectron spectra of monolayer C60on Ag(100), By calculating the intensity ratios between the LUMO bands and the two deeper bands (HOMO and HOMO- 1), we estimate the amount of the charges transferred from Ag(100) to C60 within the range of 1 e to 1.8 e. The results dismay the expectation of surface superconductivity and afford a good reference for further studies of the monolayer C60/Ag(100) system.  相似文献   

6.
7.
The structural modification of C60 films induced by 300-keV Xe-ion irradiation was investigated. The irradiated C60 films were analysed using Fourier transform infrared spectroscopy, the Raman scattering technique, ultraviolet/visible spectrophotometry and atomic force microscopy. The analysis results indicate that the Xe-ion irradiation induces polymerization and damage of the C60 molecule and significantly modifies the surface morphology and the optical property of the C60 films. The damage cross-section for the C60 molecule was also evaluated.  相似文献   

8.
In order to investigate of cobalt-doped interracial polyvinyl alcohol (PVA) layer and interface trap (Dit) effects, A1/p- Si Schottky barrier diodes (SBDs) are fabricated, and their electrical and dielectric properties are investigated at room temperature. The forward and reverse admittance measurements are carded out in the frequency and voltage ranges of 30 kHz-300 kHz and -5 V-6 V, respectively. C-V or er-V plots exhibit two distinct peaks corresponding to inversion and accumulation regions. The first peak is attributed to the existence of Dit, the other to the series resistance (Rs), and interfacial layer. Both the real and imaginary parts of dielectric constant (er and err) and electric modulus (Mr and Mrr), loss tangent (tan~), and AC electrical conductivity (aac) are investigated, each as a function of frequency and applied bias voltage. Each of the M~ versus V and Mrr versus V plots shows a peak and the magnitude of peak increases with the increasing of frequency. Especially due to the Dit and interfacial PVA layer, both capacitance (C) and conductance (G/w) values are strongly affected, which consequently contributes to deviation from both the electrical and dielectric properties of A1/Co-doped PVA/p-Si (MPS) type SBD. In addition, the voltage-dependent profile of Dit is obtained from the low-high frequency capacitance (CLF-CHF) method.  相似文献   

9.
The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity.  相似文献   

10.
Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.  相似文献   

11.
The quality of an A1GaN channel heterojunction on a sapphire substrate is massively improved by using an A1- GaN/GaN composite buffer layer. We demonstrate an A10.4Gao.6N/AI0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V.s) and a sheet resistance of 890Ω/口 under room temperature. The crystalline quality and the electrical properties of the A1GaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance-voltage (C-V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.  相似文献   

12.
The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the A1 atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-A1N, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure.  相似文献   

13.
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.  相似文献   

14.
The electrical properties of A1GaN/GaN high electron mobility transistor (HEMT) with and without high-κ organic dielectrics are investigated. The maximum drain current ID max and the maximum transconductance gm max of the organic dielectric/A1CaN/GaN structure can be enhanced by 74.5%, and 73.7% compared with those of the bare A1GaN/GaN HEMT, respectively. Both the threshold voltage VT and gm max of the dielectric/AlGaN/GaN HEMT are strongly dielectric-constant-dependent. Our results suggest that it is promising to significantly improve the performance of the A1GaN/GaN HEMT by introducing the high-κ organic dielectric.  相似文献   

15.
ZnO thin films co-doped with Al and Sb with different concentrations and a fixed molar ratio of AlCl 3 to SbCl 3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550°C for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al and Sb are of wurtzite hexagonal ZnO with a very small distortion, and the biaxial stresses are 1.03×10 8 , 3.26×10 8 , 5.23×10 8 , and 6.97×10 8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5Ω·cm.  相似文献   

16.
An electrostatic deflector for separating the fusion evaporation residues from the beam-like products in heavy ion reactions was installed. The evaporation residue separation and identification with the electrostatic deflector setup was tested with the reaction ^32S+^96Zr at several energies. The fusion evaporation residues and the beam-like particles were well separated after the electrical separation and the experimental fusion cross section obtained from the angular distribution is in good agreement with the calculated value well above the Coulomb barrier. This confirms the reliability of the setup.  相似文献   

17.
To tune the accelerating field to the design value in a periodical radio frequency accelerating structure, Slater's perturbation theorem is commonly used. This theorem solves a second-order differential equation to obtain the electrical field variation due to a local frequency shift. The solution becomes very difficult for a complex distribution of the local frequency shifts. Noticing the similarity between the field perturbation equation and the equation describing the transverse motion of a particle in a quadrupole channel, we propose in this paper a new method in which the transfer matrix method is applied to the field calculation instead of directly solving the differential equation. The advantage of the matrix method is illustrated in examples.  相似文献   

18.
Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.  相似文献   

19.
The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.  相似文献   

20.
冯艳艳  杨文  储伟 《中国物理 B》2014,(10):577-584
The main purpose of this work is to prepare various activated carbons by K2S activation of coal with size fractions of 60-80 meshes, and investigate the microporosity development and corresponding methane storage capacities. Raw coal is mixed with K2S powder, and then heated at 750 ℃-900 ℃ for 30 min-150 min in N2 atmosphere to produce the adsorbents. The texture and surface morphology are characterized by a N2 adsorption/desorption isotherm at 77 K and scanning electron microscopy (SEM). The chemical properties of carbons are confirmed by ultimate analysis. The crystal structure and degree of graphitization are tested by X-ray diffraction and Raman spectra. The relationship between sulfur content and the specific surface area of the adsorbents is also determined. K2S activation is helps to bring about better development of pore texture. These adsorbents are microporous materials with textural parameters increasing in a range of specific surface area 72.27 m2/g-657.7 m2/g and micropore volume 0.035 cm3/g-0.334 cm3/g. The ability of activated carbons to adsorb methane is measured at 298 K and at pressures up to 5.0 MPa by a volumetric method. The Langmuir model fits the experimental data well. It is concluded that the high specific surface area and micropore volume of activated carbons do determine methane adsorption capacity. The adsorbents obtained at 800 ℃ for 90 min with K2S/raw coal mass ratios of 1.0 and 1.2 show the highest methane adsorption capacities amounting to 106.98 mg/g and 106.17 mg/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号