首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冀东  刘冰  吕燕伍  邹杪  范博龄 《中国物理 B》2012,21(6):67201-067201
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

2.
An ultra-high vacuum(UHV) compatible electron spectrometer employing a double toroidal analyzer has been developed. It is designed to be combined with a custom-made scanning tunneling microscope(STM) to study the spatially localized electron energy spectrum on a surface. A tip–sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite(HOPG) is employed to test the performance of the spectrometer.Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of-140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.  相似文献   

3.
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target by an intense femtosecond laser pulse. Electrons in the preplasma are trapped and accelerated by the ponderomotive force as well as the wake field. Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by the target, electrons trapped in the laser pules can be extracted and move forward inertially. The energetic electron bunch in the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance. There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given. The maximum electron energy is inverse proportion to the preplasma density.  相似文献   

4.
In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.  相似文献   

5.
The low temperature sample stage in a transmission electron microscope is used to investigate the charge ordering behaviours in a Bi0.4Ca0.6MnO3 film with a thickness of 110 nm at 103 K. Six different types of superlattice structures are observed using the selected-area electron diffraction (SAED) technique, while three of them match well with the modulation stripes in high-resolution transmission electron microscopy (HRTEM) images. It is found that the modulation periodicity and direction are completely different in the region close to the Bi0.4Ca0.6MnO3/SrTiO3 interface from those in the region a little further from the Bi0.4Ca0.6MnO3/SrTiO3 interface, and the possible reasons for this are discussed. Based on the experimental results, structural models are proposed for these localized modulated structures.  相似文献   

6.
A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.  相似文献   

7.
Focused ion-beam-induced deposition(FIBID) and focused electron-beam-induced deposition(FEBID) are convenient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the conductive lines directly written by focused ion-beam(FIB) and focused electron-beam(FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500?C for 30 min enhances the platinum content values from ~18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current–voltage curve shows the Coulomb blockade effect.  相似文献   

8.
Undulators are key devices to produce brilliant synchrotron radiation at the synchrotron radiation facilities. In this paper we present a numerical computing method, including the computing program that has been developed to calculate the spontaneous radiation emitted from relativistic electrons in undulators by simulating the electrons' trajectory. The effects of electron beam emittance and energy spread have also been taken into account. Comparing with other computing methods available at present, this method has a few advantages with respect to several aspects. It can adopt any measured or arbitrarily simulated 3D magnetic field and arbitrary electron beam pattern for the calculation and it's able to analyze undulators of any type of magnetic structure. It's expected to predict precisely the practical radiation spectrum. The calculation results of a short period in-vacuum undulator and an Elliptically Polarized Undulator (EPU) at Shanghai Synchrotron Radiation Facility (SSRF) are presented as examples.  相似文献   

9.
This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron-cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.  相似文献   

10.
Transmission electron microscopy(TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave(CDW) state below TCDW≈ 470 K. These two structural modulations can be well explained in terms of condensations of two-coupled phonon modes with wave vectors of q1= 0.62a*on the a*–b*plane and q2=0.23a*on the a*–c*plane. The atomic displacements occur along the b-axis direction for q1and along the c-axis direction for q2, respectively. Moreover, the correlation between q1and q2can be generally written as q1=(q2+ a*)/2 in the CDW state, suggesting the presence of essential coupling between q1and q2. A small fraction of Ir doping on the Pt site in Sr(Pt1-xIrx)2As2(x ≤ 0.06) could moderately change these CDW modulations and also affect their superconductivities.  相似文献   

11.
Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy.The gels were analysed by using Fourier transform infrared spectrum,gel fraction and ionic conductivity (IC) measurement.The results show that the gel is crosslinked by EB irradiation,the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking;in addition,EB irradiation can promote the IC of PAN-PEO gels.There exists an optimum irradiation dose,at which the IC can increase dramatically.The IC changes of the PAN-PEO gels along with ID are divided into three regions:IC rapidly increasing region,IC decreasing region and IC balanced region.The cause of the change can be ascribed to two aspects,gel capturing electron degree and crosslinking degree.By comparing the IC-ID curves of different mass percents of PAN and PEO in gel,we found that PAN plays a more important role for gel IC promotion than PEO,since addition of PAN in gel causes the IC-ID curve sharper,while addition of PEO in gel causes the curve milder.  相似文献   

12.
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.  相似文献   

13.
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.  相似文献   

14.
In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field- emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74-114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field.  相似文献   

15.
Recent progress in dye-sensitized solar cells(DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO2, ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron–hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented.  相似文献   

16.
Modeling multipacting to steady state saturation is of interest in determining the performance of the micro-pulse electron gun. In this paper, a novel method is proposed to calculate the multipacting resonance param- eters for the gun. This method works well, and the 2-D simulation results suggest that steady state saturation can be achieved in the gun. After saturation the transition from two-surface multipacting to single-surface multipacting occurred, and an extensive range of electron emission time is a suggested way to avoid this kind of transition.  相似文献   

17.
Commissioning of electron cooling in CSRe   总被引:1,自引:0,他引:1  
The 400 MeV/u 12C6+ ion beam was successfully cooled by the intensive electron beam near 1 A in CSRe.The momentum cooling time was estimated near 15 s.The cooling force was measured in the cases of difierent electron beam profiles,and the difierent angles between the ion beam and electron beam.The lifetime of the ion beam in CSRe was over 80 h.The dispersion in the cooling section was confirmed as positive close to zero.The beam sizes before cooling and after cooling were measured by the moving screen.The beam diameter after cooling was about 1 mm.The bunch length was measured with the help of the signals from the beam position monitor.The difiusion was studied in the absence of the electron beam.  相似文献   

18.
The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.  相似文献   

19.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300 ℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   

20.
Electron mobility scattering mechanism in AlN/GaN heterostuctures is investigated by temperature-dependent Hall measurement, and it is found that longitudinal optical phonon scattering dominates electron mobility near room temperature while the interface roughness scattering becomes the dominant carrier scattering mechanism at low temperatures (~ 100 K). Based on measured current-voltage characteristics of prepared rectangular AlN/GaN heterostructure field-effect transistor under different temperatures, the temperature-dependent variation of electron mobility under different gate biases is inves- tigated. The polarization Coulomb field (PCF) scattering is found to become an important carrier scattering mechanism after device processing under different temperatures. Moreover, it is found that the PCF scattering is not generated from the thermal stresses, but from the piezoelectric contribution induced by the electrical field in the thin A1N barrier layer. This is attributed to the large lattice mismatch between the extreme thinner AlN barrier layer and GaN, giving rise to a stronger converse piezoelectric effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号